{-# OPTIONS --cubical #-}
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
module 3Polygraph where
import 0Polygraph as 0Pol
import 1Polygraph as 1Pol
import 2Polygraph as 2Pol
private variable
ℓ : Level
record Polygraph {ℓ : Level} : Type (ℓ-suc ℓ) where
field
pred : 2Pol.Polygraph {ℓ}
gen : 2Pol.sphere pred → Type ℓ
open Polygraph public
module _ (P : Polygraph {ℓ}) where
1sphere = 2Pol.1sphere (pred P)
2sphere = 2Pol.sphere (pred P)
2cell = 2Pol.cell (pred P)
2context = 2Pol.context (pred P)
2sphere-pred = 2Pol.sphere-pred (pred P)
2sphere-src = 2Pol.sphere-src (pred P)
2sphere-tgt = 2Pol.sphere-tgt (pred P)
2substitute = 2Pol.substitute (pred P)
record atom (s : 2sphere) : Type ℓ where
field
atom-sphere : 2sphere
atom-gen : gen P atom-sphere
atom-context : 2context (2sphere-pred atom-sphere) (2sphere-pred s)
atom-src-eq : 2sphere-src s ≡ 2substitute (2sphere-src atom-sphere) atom-context
atom-tgt-eq : 2sphere-tgt s ≡ 2substitute (2sphere-tgt atom-sphere) atom-context
open atom public
data cell : 2sphere → Type ℓ where
id : {s : 1sphere} (f : 2cell s) → cell (s , (f , f))
cons : {s : 1sphere} {x y z : 2cell s} (a : atom (s , (x , y))) (f : cell (s , (y , z))) → cell (s , (x , z))
2pres = 2Pol.pres (pred P)
data pres : Type ℓ where
pres-pred : 2pres → pres