{-# OPTIONS --cubical #-}

open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Data.Sum

module 0Polygraph where

private variable
   : Level

Polygraph : Type (ℓ-suc )
Polygraph {} = Type 

module _ (P : Polygraph {}) where

  sphere : Type 
  sphere = P × P

  sphere-src : sphere  P
  sphere-src = fst

  sphere-tgt : sphere  P
  sphere-tgt = snd

  sphere-op : sphere  sphere
  sphere-op (x , y) = y , x

  ---
  --- Tietze transformations
  ---

  tietze0 : (X : Type )  (X  P)  Polygraph {}
  tietze0 X f = P  X

functor : (P Q : Polygraph {})  Type _
functor P Q = P  Q

functor-id : {P : Polygraph {}}  functor P P
functor-id x = x

functor-comp : {P Q R : Polygraph {}}  functor P Q  functor Q R  functor P R
functor-comp f g x = g (f x)

functor-sphere : {P Q : Polygraph {}}  functor P Q  sphere P  sphere Q
functor-sphere f (x , y) = f x , f y

data tietze { : Level} : Polygraph {}  Polygraph {}  Type (ℓ-suc ) where
  T0  : (P : Polygraph) (X : Type _) (f : X  P)  tietze P (tietze0 P X f)
  T0' : (P : Polygraph) (X : Type _) (f : X  P)  tietze (tietze0 P X f) P
  Tr  : {P : Polygraph}  tietze P P
  Tt  : {P Q R : Polygraph}  tietze P Q  tietze Q R  tietze P R