{-# OPTIONS --cubical #-}
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Data.Sum
module 0Polygraph where
private variable
ℓ : Level
Polygraph : Type (ℓ-suc ℓ)
Polygraph {ℓ} = Type ℓ
module _ (P : Polygraph {ℓ}) where
sphere : Type ℓ
sphere = P × P
sphere-src : sphere → P
sphere-src = fst
sphere-tgt : sphere → P
sphere-tgt = snd
sphere-op : sphere → sphere
sphere-op (x , y) = y , x
tietze0 : (X : Type ℓ) → (X → P) → Polygraph {ℓ}
tietze0 X f = P ⊎ X
functor : (P Q : Polygraph {ℓ}) → Type _
functor P Q = P → Q
functor-id : {P : Polygraph {ℓ}} → functor P P
functor-id x = x
functor-comp : {P Q R : Polygraph {ℓ}} → functor P Q → functor Q R → functor P R
functor-comp f g x = g (f x)
functor-sphere : {P Q : Polygraph {ℓ}} → functor P Q → sphere P → sphere Q
functor-sphere f (x , y) = f x , f y
data tietze {ℓ : Level} : Polygraph {ℓ} → Polygraph {ℓ} → Type (ℓ-suc ℓ) where
T0 : (P : Polygraph) (X : Type _) (f : X → P) → tietze P (tietze0 P X f)
T0' : (P : Polygraph) (X : Type _) (f : X → P) → tietze (tietze0 P X f) P
Tr : {P : Polygraph} → tietze P P
Tt : {P Q R : Polygraph} → tietze P Q → tietze Q R → tietze P R