{-# OPTIONS --cubical -W noUnsupportedIndexedMatch --allow-unsolved-metas #-}

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sigma
open import Cubical.Data.Sum
open import Cubical.Data.Empty
open import Cubical.Data.Unit renaming (Unit* to ⊤*)
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.HITs.SetTruncation as ST
open import Cubical.HITs.Truncation

module 1Polygraph where

import 0Polygraph as 0Pol

private variable
   : Level

-- A 1-polygraph
record Polygraph { : Level} : Type (ℓ-suc ) where
  constructor polygraph
  field
    pred : 0Pol.Polygraph {}
    gen  : 0Pol.sphere pred  Type 

open Polygraph public

0Polygraph = 0Pol.Polygraph

degenerate : 0Polygraph {}  Polygraph {}
degenerate P = polygraph P  _  ⊥*)

-- add-gen : (P : Polygraph) → (0Pol.sphere (pred P) → Type ℓ) → Polygraph {ℓ}
-- add-gen P f = polygraph (pred P) (λ s → gen P s ⊎ f s)

-- add-gen-empty : (P : Polygraph {ℓ}) → add-gen (degenerate (pred P)) (gen P) ≡ P
-- add-gen-empty P = cong₂ polygraph refl (funExt λ s → ua ⊎-IdL-⊥*-≃)

-- add-gen-sym : (P : Polygraph {ℓ}) (f g : _) → add-gen (add-gen P f) g ≡ add-gen (add-gen P g) f
-- add-gen-sym P f g = cong₂ polygraph refl (funExt λ s → ua ⊎-assoc-≃ ∙ cong (λ X → gen P s ⊎ X) (ua ⊎-swap-≃) ∙ sym (ua ⊎-assoc-≃))

module _ (P : Polygraph {}) where

  0sphere = 0Pol.sphere (pred P)
  0sphere-src = 0Pol.sphere-src (pred P)
  0sphere-tgt = 0Pol.sphere-tgt (pred P)
  0sphere-op = 0Pol.sphere-op (pred P)

  -- A cell in the 1-polygraph
  data cell : 0sphere  Type  where
    id   : (x : pred P)  cell (x , x)
    cons : {x y z : pred P} (a : gen P (x , y)) (f : cell (y , z))  cell (x , z)
    cons' : {x y z : pred P} (a : gen P (y , x)) (f : cell (y , z))  cell (x , z)

  comp0 : {x y z : pred P}  cell (x , y)  cell (y , z)  cell (x , z)
  comp0 (id _) g = g
  comp0 (cons a f) g = cons a (comp0 f g)
  comp0 (cons' a f) g = cons' a (comp0 f g)

  comp0-assoc : {x y z w : pred P} (f : cell (x , y)) (g : cell (y , z)) (h : cell (z , w))  comp0 (comp0 f g) h  comp0 f (comp0 g h)
  comp0-assoc (id _) g h = refl
  comp0-assoc (cons a f) g h = cong (cons a) (comp0-assoc f g h)
  comp0-assoc (cons' a f) g h = cong (cons' a) (comp0-assoc f g h)

  comp0-unitl : {x y : pred P} (f : cell (x , y))  comp0 (id x) f  f
  comp0-unitl f = refl

  comp0-unitr : {x y : pred P} (f : cell (x , y))  comp0 f (id y)  f
  comp0-unitr (id _) = refl
  comp0-unitr (cons a f) = cong (cons a) (comp0-unitr f)
  comp0-unitr (cons' a f) = cong (cons' a) (comp0-unitr f)

  cell-gen : {s : 0sphere}  gen P s  cell s
  cell-gen a = cons a (id _)

  cell-gen' : {s : 0sphere}  gen P s  cell (0sphere-op s)
  cell-gen' a = cons' a (id _)

  snoc : {x y z : pred P}  gen P (y , z)  cell (x , y)  cell (x , z)
  snoc a (id _) = cell-gen a
  snoc a (cons b f) = cons b (snoc a f)
  snoc a (cons' b f) = cons' b (snoc a f)

  snoc' : {x y z : pred P}  gen P (z , y)  cell (x , y)  cell (x , z)
  snoc' a (id _) = cons' a (id _)
  snoc' a (cons b f) = cons b (snoc' a f)
  snoc' a (cons' b f) = cons' b (snoc' a f)

  -- Opposite of a cell
  cell-op : {s : 0sphere}  cell s  cell (0sphere-op s)
  cell-op (id x) = id x
  cell-op (cons a f) = snoc' a (cell-op f)
  cell-op (cons' a f) = snoc a (cell-op f)

  -- A sphere in the 1-polygraph
  sphere : Type 
  sphere = Σ 0sphere  s  cell s × cell s)

  sphere-pred : sphere  0sphere
  sphere-pred = fst

  sphere-src : (s : sphere)  cell (sphere-pred s)
  sphere-src s = fst (snd s)

  sphere-tgt : (s : sphere)  cell (sphere-pred s)
  sphere-tgt s = snd (snd s)

  context : 0sphere  0sphere  Type 
  context (x , y) (x' , y') = cell (x' , x) × cell (y , y')

  substitute : {s t : 0sphere}  cell s  context s t  cell t
  substitute g (f , h) = comp0 f (comp0 g h)

  context-id : {s : 0sphere}  context s s
  context-id = id _ , id _

  context-comp : {s t u : 0sphere}  context s t  context t u  context s u
  context-comp (f , g) (f' , g') = comp0 f' f , comp0 g g'

  substitute-id : {s : 0sphere} (f : cell s)  substitute f context-id  f
  substitute-id f = comp0-unitr f

  substitute-comp :
    {s t u : 0sphere} (f : cell s) (c : context s t) (d : context t u) 
    substitute f (context-comp c d)  substitute (substitute f c) d
  substitute-comp g (f , h) (f' , h') =
    comp0 (comp0 f' f) (comp0 g (comp0 h h')) ≡⟨ comp0-assoc f' _ _ 
    comp0 f' (comp0 f (comp0 g (comp0 h h'))) ≡⟨ cong (comp0 f') (cong (comp0 f) (sym (comp0-assoc g h h'))) 
    comp0 f' (comp0 f (comp0 (comp0 g h) h')) ≡⟨ cong (comp0 f') (sym (comp0-assoc f _ _)) 
    comp0 f' (comp0 (comp0 f (comp0 g h)) h') 

  -- The presented type (geometric realization)
  data pres : Type  where
    pres-pred : pred P  pres
    disk      : {s : 0sphere}  gen P s  pres-pred (0sphere-src s)  pres-pred (0sphere-tgt s)

  pres-elim :
    {ℓ' : Level} (A : pres  Type ℓ') 
    (p : (x : pred P)  A (pres-pred x)) 
    ({s : 0sphere} (a : gen P s)  PathP  i  A (disk a i)) (p (0sphere-src s)) (p (0sphere-tgt s))) 
    (x : pres)  A x
  pres-elim A p q (pres-pred x) = p x
  pres-elim A p q (disk a i) = q a i

  pres-rec :
    {ℓ' : Level} {A : Type ℓ'}
    (p : (pred P)  A) 
    ({s : 0sphere}  (gen P s)  p (0sphere-src s)  p (0sphere-tgt s)) 
    pres  A
  pres-rec {A = A} = pres-elim λ _  A

  -- Realization of a cell into the presented type
  pres-cell : {s : 0sphere}  cell s  pres-pred (0sphere-src s)  pres-pred (0sphere-tgt s)
  pres-cell (id x) = refl
  pres-cell (cons a f) = disk a  pres-cell f
  pres-cell (cons' a f) = sym (disk a)  pres-cell f

  cell-pres = pres-cell

  -- -- There is a cell between any two elements of the presented set
  -- -- TODO: we would need Kraus-von Raummer for this
  -- coh-cell : {(x , y) : 0sphere} (p : ∣ pres-pred x ∣₂ ≡ ∣ pres-pred y ∣₂) → ∥ cell (x , y) ∥₁
  -- coh-cell p = PT.elim (λ _ → isPropPropTrunc) (λ p → {!!}) (invEq propTrunc≃Trunc1 ((Iso.fun (PathIdTruncIso 1) (cong (equivFun setTrunc≃Trunc2) p))))

  -- Any element of the presented set has a representative
  has-repr : (x :  pres ∥₂)   Σ (pred P)  y   pres-pred y ∣₂  x) ∥₁
  has-repr = ST.elim  _  isProp→isSet isPropPropTrunc) (pres-elim  x   Σ (pred P)  y   pres-pred y ∣₂   x ∣₂) ∥₁)  x   x , refl ∣₁) λ x  toPathP (isPropPropTrunc _ _))

  ---
  --- Tietze transformations
  ---

  tietze0 : (X : Type )  (X  pred P)  Polygraph {}
  tietze0 X f = polygraph (pred P  X) g
    where
    g : 0Pol.sphere (pred P  X)  Type 
    g (inl x , inl y) = gen P (x , y)
    g (inl x , inr y) = x  f y
    g (inr x , _) = ⊥*

  -- Canonical 1-genertor associated to an added 0-generator
  tietze0gen : {X : Type } (f : X  pred P) (x : X)  gen (tietze0 X f) (inl (f x) , inr x)
  tietze0gen f x = refl

  tietze1 : (f : 0sphere  Type )  ({s : 0sphere}  f s  cell s)  Polygraph {}
  -- tietze1 f _ = add-gen P f
  tietze1 f g = polygraph (pred P) g'
    where
    g' : 0Pol.sphere (pred P)  Type 
    g' s = gen P s  f s

data tietze { : Level} : Polygraph {}  Polygraph {}  Type (ℓ-suc ) where
  T0  : (P : Polygraph) (X : Type _) (f : X  pred P)  tietze P (tietze0 P X f)
  T0' : (P : Polygraph) (X : Type _) (f : X  pred P)  tietze (tietze0 P X f) P
  T1  : (P : Polygraph) (f : 0sphere P  Type ) (g : {s : 0sphere P}  f s  cell P s)  tietze P (tietze1 P f g)
  T1' : (P : Polygraph) (f : 0sphere P  Type ) (g : {s : 0sphere P}  f s  cell P s)  tietze (tietze1 P f g) P
  Tr  : {P : Polygraph}  tietze P P
  Tt  : {P Q R : Polygraph}  tietze P Q  tietze Q R  tietze P R

T≡ : {P Q : Polygraph {}}  P  Q  tietze P Q
T≡ {P = P} p = subst (tietze P) p Tr

module _ (P : Polygraph {}) where

  tietze0-correct : (X : Type ) (f : X  pred P)   pres P ∥₂   pres (tietze0 P X f) ∥₂
  tietze0-correct X f = ua (isoToEquiv e)
    where
    Q = tietze0 P X f
    F : pres P  pres Q
    F = pres-rec _  x  pres-pred (inl x))  a  disk a)
    G : pres Q  pres P
    G = pres-rec _ p q
      where
      p : pred Q  pres P
      p (inl x) = pres-pred x
      p (inr x) = pres-pred (f x)
      q : {s : 0sphere Q}  gen Q s  p (0sphere-src Q s)  p (0sphere-tgt Q s)
      q {s = inl x , inl y} a = disk a
      q {s = inl x , inr y} a = cong pres-pred a
    open Iso
    e : Iso  pres P ∥₂  pres Q ∥₂
    F' = ST.map F
    G' = ST.map G
    e .fun = F'
    e .inv = G'
    e .rightInv = ST.elim  _  isProp→isSet (isSetSetTrunc _ _)) (pres-elim Q  x  F' (G'  x ∣₂)   x ∣₂) p  _  toPathP (isSetSetTrunc _ _ _ _)))
      where
      p : (x : pred Q)  F' (G'  pres-pred x ∣₂)   pres-pred x ∣₂
      p (inl x) = refl
      p (inr x) = cong ∣_∣₂ (disk refl)
    e .leftInv = ST.elim  _  isProp→isSet (isSetSetTrunc _ _)) (pres-elim P  x  G' (F'  x ∣₂)   x ∣₂)  _  refl) λ _  toPathP (isSetSetTrunc _ _ _ _))

  tietze1-correct : (f : 0sphere P  Type )  (g : {s : 0sphere P}  f s  cell P s)   pres P ∥₂   pres (tietze1 P f g) ∥₂
  tietze1-correct f g = ua (isoToEquiv e)
    where
    Q = tietze1 P f g
    F : pres P  pres Q
    F = pres-rec P pres-pred  a  disk (inl a))
    G : pres Q  pres P
    G = pres-rec Q pres-pred p
      where
      p : {s : 0sphere Q}  gen Q s  pres-pred (0sphere-src Q s)  pres-pred (0sphere-tgt Q s)
      p (inl a) = disk a
      p (inr a) = pres-cell P (g a)
    F' = ST.map F
    G' = ST.map G
    open Iso
    e : Iso  pres P ∥₂  pres Q ∥₂
    e .fun = F'
    e .inv = G'
    e .rightInv = ST.elim  _  isProp→isSet (isSetSetTrunc _ _)) (pres-elim Q  x  F' (G'  x ∣₂)   x ∣₂)  _  refl) λ _  toPathP (isSetSetTrunc _ _ _ _))
    e .leftInv = ST.elim  _  isProp→isSet (isSetSetTrunc _ _)) (pres-elim P  x  G' (F'  x ∣₂)   x ∣₂)  _  refl) λ _  toPathP (isSetSetTrunc _ _ _ _))

-- Correctness of Tietze transformations (see below for another proof)
tietze-correct : {P Q : Polygraph {}}  tietze P Q   pres P ∥₂   pres Q ∥₂
tietze-correct (T0 P X f) = tietze0-correct P X f
tietze-correct (T1 P f g) = tietze1-correct P f g
tietze-correct (T0' P X f) = sym (tietze0-correct P X f)
tietze-correct (T1' P f g) = sym (tietze1-correct P f g)
tietze-correct Tr = refl
tietze-correct (Tt r s) = tietze-correct r  tietze-correct s

-- module _ where
  -- private
    -- postulate AC : {ℓ ℓ' : Level} {A : Type ℓ} {B : A → Type ℓ'} → ((a : A) → ∥ B a ∥₁) → ∥ ((a : A) → B a) ∥₁

  -- tietze-complete : {P Q : Polygraph {ℓ}} → ∥ pres P ∥₂ ≡ ∥ pres Q ∥₂ → ∥ tietze P Q ∥₁
  -- tietze-complete {ℓ = ℓ} {P = P} {Q = Q} p = ST-rec-fun isPropPropTrunc (λ f → ST-rec-fun isPropPropTrunc (λ g → {!!}) g) f
    -- where
    -- ST-rec-fun : {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} → isProp C → ((A → B) → C) → (A → ∥ B ∥₁) → C
    -- ST-rec-fun PC f f' = PT.rec PC f (AC f')
    -- pres→pred : {P : Polygraph {ℓ}} → pres P → ∥ pred P ∥₁
    -- pres→pred = pres-rec _ ∣_∣₁ (λ _ → isPropPropTrunc _ _)
    -- pres→pred' : {P : Polygraph {ℓ}} → ∥ pres P ∥₂ → ∥ pred P ∥₁
    -- pres→pred' = ST.rec (isProp→isSet isPropPropTrunc) pres→pred
    
    -- f'' : pres P → ∥ pres Q ∥₂
    -- f'' x = transport p ∣ x ∣₂
    -- f' : pred P → ∥ pres Q ∥₂
    -- f' x = f'' (pres-pred x)
    -- f : pred P → ∥ pred Q ∥₁
    -- -- f x = pres→pred' (f' x)
    -- f x = pres→pred' (transport p ∣ pres-pred x ∣₂)

    -- lem : tietze P Q
    -- lem = Tt (T0 P (pred Q) (λ y → fst (G y))) (Tt (Tt (T1 P' S S-cell) (Tt (T1 {!_!} {!!} {!!}) (T≡ {!!}))) (T0' Q (pred P) λ x → fst (F x)))
      -- where
      -- postulate F : (x : pred P) → Σ (pred Q) (λ y → transport p ∣ pres-pred x ∣₂ ≡ ∣ pres-pred y ∣₂)
      -- postulate G : (y : pred Q) → Σ (pred P) (λ x → transport (sym p) ∣ pres-pred y ∣₂ ≡ ∣ pres-pred x ∣₂)
      -- P' = tietze0 P (pred Q) (λ y → fst (G y))
      -- -- S : 0sphere P' → Type ℓ
      -- -- S (inl x , inl _) = ⊥*
      -- -- S (inl x , inr y) = fst (F x) ≡ y
      -- -- S (inr x , y) = ⊥*
      -- -- S-cell : {s : 0sphere P'} → S s → cell P' s
      -- -- S-cell {s = inl x , inr y} p = {!!}
      -- S : 0sphere P' → Type ℓ
      -- S (x , inl _) = ⊥*
      -- S (inl x , inr y) = ⊥*
      -- S (inr x , inr y) = gen Q (x , y)
      -- S-cell : {s : 0sphere P'} → S s → cell P' s
      -- S-cell {s = inr x , inr y} a =
        -- comp0 P' {y = inl (fst (G x))}
        -- (cell-gen' _ refl) (comp0 _ {y = inl (fst (G y))}
        -- {!!} -- by the second component of G, both are in the same connected component and thus exists is an equality and thus a 1-cell
        -- (cell-gen _ refl))
      
    -- g'' : pres Q → ∥ pres P ∥₂
    -- g'' x = transport (sym p) ∣ x ∣₂
    -- g' : pred Q → ∥ pres P ∥₂
    -- g' x = g'' (pres-pred x)
    -- g : pred Q → ∥ pred P ∥₁
    -- g x = pres→pred' (g' x)

    -- g''-pres-pred : (x : pred Q) → g'' (pres-pred x) ≡ g' x
    -- g''-pres-pred x = refl

    -- g''-f'' : (x : pres P) → ST.rec isSetSetTrunc g'' (f'' x) ≡ ∣ x ∣₂
    -- g''-f'' x = {!!}

    -- g''-f' : (x : pred P) → ST.rec isSetSetTrunc g'' (f' x) ≡ ∣ pres-pred x  ∣₂
    -- g''-f' x = {!!}

--- Functors between polygraphs
---

-- A functor is a "Kleisli graph morphism" which associates to every 1-generator a 1-cell 
record functor { : Level} (P Q : Polygraph {}) : Type  where
  constructor func
  field
    func-pred : 0Pol.functor (pred P) (pred Q)
    func-fun  : {s : 0sphere P}  gen P s  cell Q (0Pol.functor-sphere func-pred s)

open functor public

functor-0sphere : {P Q : Polygraph {}}  functor P Q  0sphere P  0sphere Q
functor-0sphere f = 0Pol.functor-sphere (func-pred f)

-- Identity functor
functor-id : {P : Polygraph {}}  functor P P
functor-id = func 0Pol.functor-id (cell-gen _)

-- Lifting of functors to 1-cells
functor-bind : {P Q : Polygraph {}} (f : functor P Q) {s : 0sphere P}  cell P s  cell Q (functor-0sphere f s)
functor-bind f (id x) = id _
functor-bind f (cons a u) = comp0 _ (func-fun f a) (functor-bind f u)
functor-bind f (cons' a u) = comp0 _ (cell-op _ (func-fun f a)) (functor-bind f u)

-- Composition of functors
functor-comp : {P Q R : Polygraph {}}  functor P Q  functor Q R  functor P R
functor-comp f g = func (0Pol.functor-comp (func-pred f) (func-pred g))  a  functor-bind g (func-fun f a))

-- Application of a functor to a 1-sphere
functor-sphere : {P Q : Polygraph {}}  functor P Q  sphere P  sphere Q
functor-sphere f (s , x , y) = 0Pol.functor-sphere (func-pred f) s , functor-bind f x , functor-bind f y

-- Application of a functor to a context
functor-context : {P Q : Polygraph {}} {s t : 0sphere P} (f : functor P Q)  context P s t  context Q (functor-0sphere f s) (functor-0sphere f t)
functor-context f (u , v) = functor-bind f u , functor-bind f v

-- TODO: we could also show that bind id ≡ id (instead of this extensional version bind id f ≡ f)
functor-bind-id : {P : Polygraph {}} {s : 0sphere P} (f : cell P s)  functor-bind functor-id f  f
functor-bind-id (id x) = refl
functor-bind-id (cons a f) = cong (cons a) (functor-bind-id f)
functor-bind-id (cons' a f) = cong (cons' a) (functor-bind-id f)

-- Map between presented types induced by a functor
functor-pres : {P Q : Polygraph {}}  functor P Q  pres P  pres Q
functor-pres f = pres-rec _  x  pres-pred (func-pred f x))  a  pres-cell _ (func-fun f a))

-- An explicit equivalence between polygraphs (where we have cells in the polygraph witnessing for the fact that G∘F ∼ id)
record equivalence { : Level} (P Q : Polygraph {}) : Type  where
  constructor equiv
  field
    equiv-f : functor P Q
    equiv-g : functor Q P
    equiv-gf : (x : pred P)  cell P (x , func-pred equiv-g (func-pred equiv-f x))
    equiv-fg : (y : pred Q)  cell Q (y , func-pred equiv-f (func-pred equiv-g y))

open equivalence public

equivalence-id : {P : Polygraph {}}  equivalence P P
equivalence-id = equiv functor-id functor-id id id

equivalence-sym : {P Q : Polygraph {}}  equivalence P Q  equivalence Q P
equivalence-sym e = equiv (e .equiv-g) (e .equiv-f) (e .equiv-fg) (e .equiv-gf)

equivalence-comp : {P Q R : Polygraph {}}  equivalence P Q  equivalence Q R  equivalence P R
equivalence-comp {P = P} {R = R} e1 e2 = equiv f g c d
  where
  f1 = equiv-f e1
  f2 = equiv-f e2
  f  = functor-comp f1 f2
  g1 = equiv-g e1
  g2 = equiv-g e2
  g  = functor-comp g2 g1
  c : (x : pred P)  cell P (x , func-pred g (func-pred f x))
  c x = comp0 _ (equiv-gf e1 x) (functor-bind g1 (equiv-gf e2 (func-pred f1 x)))
  d : (y : pred R)  cell R (y , func-pred f (func-pred g y))
  d y = comp0 _ (equiv-fg e2 y) (functor-bind f2 (equiv-fg e1 (func-pred g2 y)))

-- The preservation theorem
preservation : {P Q : Polygraph {}}  tietze P Q  equivalence P Q
preservation (T0 P X f) = equiv F G id FG
  where
  Q = tietze0 P X f
  F : functor P Q
  F .func-pred = inl
  F .func-fun a = cell-gen _ a
  G : functor Q P
  G .func-pred (inl x) = x
  G .func-pred (inr x) = f x
  G .func-fun {s = inl x , inl y} a = cell-gen _ a
  G .func-fun {s = inl x , inr y} a = subst  x'  cell P (x , x')) a (id x) -- a : x ≡ f y , on veut : cell P (x , f y)
  G .func-fun {s = inr x , inl y} ()
  G .func-fun {s = inr x , inr y} ()
  FG : (y : pred Q)  cell Q (y , func-pred F (func-pred G y))
  FG (inl x) = id (inl x)
  FG (inr x) = cell-op Q (cell-gen Q refl)
preservation (T0' P X f) = equivalence-sym (preservation (T0 P X f))
preservation (T1 P f g) = equiv F G id id
  where
  Q = tietze1 P f g
  F : functor P Q
  F .func-pred x = x
  F .func-fun a = cell-gen Q (inl a)
  G : functor Q P
  G .func-pred x = x
  G .func-fun (inl a) = cell-gen P a
  G .func-fun (inr a) = g a
preservation (T1' P f g) = equivalence-sym (preservation (T1 P f g))
preservation Tr = equivalence-id
preservation (Tt T U) = equivalence-comp (preservation T) (preservation U)

-- Equivalent presentations induce the same truncated presented type
equivalence-pres : {P Q : Polygraph {}}  equivalence P Q   pres P ∥₂   pres Q ∥₂
equivalence-pres {P = P} {Q = Q} E = ua (isoToEquiv e)
  where
  open Iso
  e : Iso  pres P ∥₂  pres Q ∥₂
  e .fun = ST.map (functor-pres (E .equiv-f))
  e .inv = ST.map (functor-pres (E .equiv-g))
  e .rightInv = ST.elim  _  isProp→isSet (isSetSetTrunc _ _)) (pres-elim _ _  x  sym (cong ∣_∣₂ (cell-pres _ (equiv-fg E x))))  _  toPathP (isSetSetTrunc _ _ _ _)))
  e .leftInv  = ST.elim  _  isProp→isSet (isSetSetTrunc _ _)) (pres-elim _ _  x  sym (cong ∣_∣₂ (cell-pres _ (equiv-gf E x))))  _  toPathP (isSetSetTrunc _ _ _ _)))

-- We recover a ("more constructive") proof of correction of tietze equivalences (in fact, we could remove the above one which is the one obtained by "cut elimination")
tietze-correct' : {P Q : Polygraph {}}  tietze P Q   pres P ∥₂   pres Q ∥₂
tietze-correct' T = equivalence-pres (preservation T)

-- module _ where
  -- private
    -- postulate AC : {ℓ ℓ' : Level} {A : Type ℓ} {B : A → Type ℓ'} → ((a : A) → ∥ B a ∥₁) → ∥ ((a : A) → B a) ∥₁

  -- AC2 : {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {A' : Type ℓ'} {B : A → A' → Type ℓ''} → ((a : A) (a' : A') → ∥ B a a' ∥₁) → ∥ ((a : A) (a' : A') → B a a') ∥₁
  -- AC2 f = AC λ a → AC (f a)

  -- tietze-complete' : {P Q : Polygraph {ℓ}} → ∥ pres P ∥₂ ≡ ∥ pres Q ∥₂ → ∥ equivalence P Q ∥₁
  -- tietze-complete' {P = P} {Q = Q} p = {!!}
    -- -- PT.rec isPropPropTrunc (λ F₀ → {!!}) (AC2 F₀)
    -- where
    -- F₀ : (pres P → pres Q) → pred P → ∥ pred Q ∥₁
    -- F₀ f x = pres-rec _ ∣_∣₁ (λ _ → isPropPropTrunc _ _) (f (pres-pred x))
    -- F₁ : (f : pres P → pres Q) (F₀ : pred P → pred Q) {s : 0sphere P} → gen P s → ∥ gen Q (0Pol.functor-sphere F₀ s) ∥₁
    -- F₁ f F₀ a = {!!}

inl-ret : { ℓ' : Level} {A : Type } {B : Type ℓ'}  (B  A)  A  B  A
inl-ret f (inl x) = x
inl-ret f (inr x) = f x

-- Generators for the extension theorem
extension-gen :
  (P : Polygraph {})
  {Q' : 0Polygraph {}} 
  0Pol.tietze (pred P) Q' 
  (0Pol.sphere Q'  Type )
extension-gen P (0Pol.T0 .(pred P) X f) = gen (tietze0 P X f)
extension-gen P {Q' = Q'} (0Pol.T0' _ X f) (x , y) = Σ (Q'  X) λ x'  Σ (Q'  X) λ y'  (x  f' x') × gen P (x' , y') × (y  f' y')
  -- gen P (inl x , inl y) ⊎ Σ X λ x' → Σ X λ y' → (x ≡ f x') × gen P (inr x' , inr y') × (y ≡ f y') -- TODO: encore plus de cas (encore 2).................
  where
  -- f' : Q' ⊎ X → Q'
  -- f' (inl x) = x
  -- f' (inr x) = f x
  f' = inl-ret f
extension-gen P 0Pol.Tr = gen P
extension-gen P (0Pol.Tt T T') = extension-gen (polygraph _ (extension-gen P T)) T'

-- The extension function
extension :
  { : Level}
  (P : Polygraph {})
  {Q' : 0Polygraph {}} 
  0Pol.tietze (pred P) Q' 
  Polygraph {}
extension { = } P {Q'} T = polygraph Q' (extension-gen P T)

-- Coherence
coherent : Polygraph {}  Type 
coherent P = (s : 0sphere P)  cell P s

-- -- The extension function is correct
-- extension-correct :
  -- (P : Polygraph {ℓ})
  -- {Q : 0Polygraph {ℓ}} →
  -- (T : 0Pol.tietze (pred P) Q) →
  -- tietze P (extension P T)
-- extension-correct P (0Pol.T0 .(pred P) X f) = T0 P X f
-- extension-correct P (0Pol.T0' _ X f) = {!T0' ? ? ?!} -- we seem to need the hypothesis that P is coherent here
-- extension-correct P 0Pol.Tr = Tr
-- extension-correct P (0Pol.Tt T T') = Tt (extension-correct P T) (extension-correct (polygraph _ (extension-gen P T)) T')

-- The extension function is correct
extension-correct :
  (P : Polygraph {})
  {Q : 0Polygraph {}} 
  coherent P 
  (T : 0Pol.tietze (pred P) Q) 
  tietze P (extension P T)

-- The transfer theorem
transfer :
  {P : Polygraph {}}
  {Q' : 0Polygraph {}} 
  coherent P 
  (T' : 0Pol.tietze (pred P) Q') 
  coherent (extension P T')

module _ (Q₀ : 0Polygraph {}) (X : Type ) (f : X  Q₀) (P₁ : 0Pol.sphere (Q₀  X)  Type ) (coh : coherent (polygraph (Q₀  X) P₁)) where
  private
    P₀ = Q₀  X

    P = polygraph P₀ P₁
    
    -- -- normalize elements of P₀
    -- nf : P₀ → P₀
    -- nf x = inl (inl-ret f x)

    -- -- extension of nf to spheres
    -- nf-sphere : 0sphere P → 0sphere P
    -- nf-sphere = 0Pol.functor-sphere nf

    -- Q = extension P (0Pol.T0' Q₀ X f)
    Q = polygraph Q₀  s  Σ P₀ λ x'  Σ P₀ λ y'  (0Pol.sphere-src _ s  inl-ret f x') × gen P (x' , y') × (0Pol.sphere-tgt _ s  inl-ret f y'))

    P' = tietze0 Q X f

  tietze1' : tietze P P'
  tietze1' = Tt
    (T1 P (gen P') c)
    (Tt (T≡ swap)
    (T1' P' (gen P) d))

    where
    c : {s : 0sphere P}  gen P' s  cell P s
    -- c {inl x , inl y} (x' , y' , p , a , q) = cell-gen _ (subst2 (λ x y → gen P (x , y)) ({!!} ∙ cong inl (sym p)) ({!!} ∙ cong inl (sym q)) a)
    -- c {inl x , inr y} a = comp0 P {y = inl (f y)} {!!} {!!} -- for this second case, we need coh
      -- where
      -- p : x ≡ f y
      -- p = a
    -- c {inr x , inl y} ()
    -- c {inr x , inr y} ()
    c a = coh _

    d : {s : 0sphere P'}  gen P s  cell P' s
    d {inl x , inl y} a = cell-gen _ (inl x , inl y , refl , a , refl)
    d {inl x , inr y} a = cons (inl x , inr y , refl , a , refl) (cell-gen _ (tietze0gen Q f y))
    d {inr x , inl y} a = cons' (tietze0gen Q f x) (cell-gen _ (inr x , inl y , refl , a , refl))
    d {inr x , inr y} a = cons' (tietze0gen Q f x) (cons (inr x , inr y , refl , a , refl) (cell-gen _ (tietze0gen Q f y)))

    -- NOTE: it would work for any polygraphs P and P' with the same underlying 0-polygraph
    swap : tietze1 P (gen P') c  tietze1 P' (gen P) d
    swap = cong₂ polygraph refl (funExt λ s  ua ⊎-swap-≃)

extension-correct P coh (0Pol.T0 .(pred P) X f) = T0 P X f
-- NOTE: we need the hypothesis that P is coherent here
extension-correct P coh T@(0Pol.T0' Q' X f) = Tt lem (T0' Q X f)
  where
  Q : Polygraph
  Q = extension P T
  lem : tietze P (tietze0 Q X f)
  lem = tietze1' Q' X f (gen P) coh
extension-correct P coh 0Pol.Tr = Tr
extension-correct P coh (0Pol.Tt T T') = Tt (extension-correct P coh T) (extension-correct (extension P T) (transfer coh T) T')

transfer {P = P} {Q' = Q'} coh T' (x , y) =
  -- NOTE: this is where we need inverses (op)
  comp0 _ (equiv-fg E x) (comp0 _ (functor-bind F (coh (func-pred G x , func-pred G y))) (cell-op _ (equiv-fg E y)))
  where
  Q = extension P T'

  T : tietze P Q
  T = extension-correct P coh T'

  E : equivalence P Q
  E = preservation T

  F : functor P Q
  F = equiv-f E

  G : functor Q P
  G = equiv-g E