{-# OPTIONS --cubical -W noUnsupportedIndexedMatch --allow-unsolved-metas #-}
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.Empty
module 2Polygraph where
import 0Polygraph as 0Pol
import 1Polygraph as 1Pol
private variable
ℓ : Level
record Polygraph {ℓ : Level} : Type (ℓ-suc ℓ) where
constructor polygraph
field
pred : 1Pol.Polygraph {ℓ}
gen : 1Pol.sphere pred → Type
whisker2 : {A : Type ℓ} {x y z w : A} (f : x ≡ y) {g g' : y ≡ z} (F : g ≡ g') (h : z ≡ w) → f ∙ g ∙ h ≡ f ∙ g' ∙ h
whisker2 f {g = g} F h = J (λ g' F → f ∙ g ∙ h ≡ f ∙ g' ∙ h) refl F
open Polygraph public
module _ (P : Polygraph {ℓ}) where
0cell = 1Pol.pred (pred P)
0sphere = 1Pol.0sphere (pred P)
1sphere = 1Pol.sphere (pred P)
1sphere-pred = 1Pol.sphere-pred (pred P)
1sphere-src = 1Pol.sphere-src (pred P)
1sphere-tgt = 1Pol.sphere-tgt (pred P)
1cell = 1Pol.cell (pred P)
1substitute = 1Pol.substitute (pred P)
1comp0 = 1Pol.comp0 (pred P)
1context = 1Pol.context (pred P)
1context-id = 1Pol.context-id (pred P)
1context-comp = 1Pol.context-comp (pred P)
1substitute-id = 1Pol.substitute-id (pred P)
1substitute-comp = 1Pol.substitute-comp (pred P)
gen-src : {s : 1sphere} → gen P s → 1cell (1sphere-pred s)
gen-src {s} _ = 1sphere-src s
gen-tgt : {s : 1sphere} → gen P s → 1cell (1sphere-pred s)
gen-tgt {s} _ = 1sphere-tgt s
record atom (s : 1sphere) : Type ℓ where
field
atom-sphere : 1sphere
atom-gen : gen P atom-sphere
atom-context : 1context (1sphere-pred atom-sphere) (1sphere-pred s)
atom-src-eq : 1sphere-src s ≡ 1substitute (1sphere-src atom-sphere) atom-context
atom-tgt-eq : 1sphere-tgt s ≡ 1substitute (1sphere-tgt atom-sphere) atom-context
open atom public
atom-src : {s : 1sphere} → atom s → 1cell (1sphere-pred s)
atom-src a = 1substitute (1sphere-src (atom-sphere a)) (atom-context a)
atom-tgt : {s : 1sphere} → atom s → 1cell (1sphere-pred s)
atom-tgt a = 1substitute (1sphere-tgt (atom-sphere a)) (atom-context a)
atom-generator : {s : 1sphere} → gen P s → atom s
atom-generator {s = s} a =
record
{ atom-sphere = s
; atom-gen = a
; atom-context = 1context-id
; atom-src-eq = sym (1substitute-id _)
; atom-tgt-eq = sym (1substitute-id _)
}
data cell : 1sphere → Type ℓ where
id : {s : 0sphere} (f : 1cell s) → cell (s , (f , f))
cons : {s : 0sphere} {x y z : 1cell s} (a : atom (s , (x , y))) (f : cell (s , (y , z))) → cell (s , (x , z))
cons' : {s : 0sphere} {x y z : 1cell s} (a : atom (s , (y , x))) (f : cell (s , (y , z))) → cell (s , (x , z))
comp1 : {s : 0sphere} {x y z : 1cell s} → cell (s , (x , y)) → cell (s , (y , z)) → cell (s , (x , z))
comp1 (id _) g = g
comp1 (cons a f) g = cons a (comp1 f g)
comp1 (cons' a f) g = cons' a (comp1 f g)
cell-atom : {s : 1sphere} → atom s → cell s
cell-atom a = cons a (id _)
cell-gen : {s : 1sphere} → gen P s → cell s
cell-gen a = cell-atom (atom-generator a)
sphere : Type ℓ
sphere = Σ 1sphere (λ s → cell s × cell s)
sphere-pred : sphere → 1sphere
sphere-pred = fst
sphere-src : (s : sphere) → cell (sphere-pred s)
sphere-src s = fst (snd s)
sphere-tgt : (s : sphere) → cell (sphere-pred s)
sphere-tgt s = snd (snd s)
record context (s t : 1sphere) : Type ℓ where
field
context-pred : 1context (1sphere-pred s) (1sphere-pred t)
context-fst : cell (_ , (1sphere-src t , 1substitute (1sphere-src s) context-pred))
context-snd : cell (_ , (1substitute (1sphere-tgt s) context-pred , 1sphere-tgt t))
open context public
substitute+ : {s : 1sphere} {t : 0sphere} (f : cell s) (c : 1context (1sphere-pred s) t) → cell (t , (1substitute (1sphere-src s) c , 1substitute (1sphere-tgt s) c))
substitute+ (id f) c = id (1substitute f c)
substitute+ (cons {x = x} {y = y} a f) c = cons a' (substitute+ f c)
where
u = 1sphere-src (atom-sphere a)
v = 1sphere-tgt (atom-sphere a)
c' = atom-context a
p : 1substitute x c ≡ 1substitute u (1context-comp c' c)
p =
1substitute x c ≡⟨ cong (λ x → 1substitute x c) (atom-src-eq a) ⟩
1substitute (atom-src a) c ≡⟨ refl ⟩
1substitute (1substitute u c') c ≡⟨ sym (1substitute-comp _ c' c) ⟩
1substitute u (1context-comp c' c) ∎
q : 1substitute y c ≡ 1substitute v (1context-comp c' c)
q =
1substitute y c ≡⟨ cong (λ y → 1substitute y c) (atom-tgt-eq a) ⟩
1substitute (1substitute v c') c ≡⟨ sym (1substitute-comp _ c' c) ⟩
1substitute v (1context-comp c' c) ∎
a' : atom (_ , 1substitute x c , 1substitute y c)
a' = record
{ atom-sphere = atom-sphere a
; atom-gen = atom-gen a
; atom-context = 1Pol.context-comp _ (atom-context a) c
; atom-src-eq = p
; atom-tgt-eq = q
}
substitute+ (cons' {x = x} {y = y} a f) c = {!!}
substitute : {s t : 1sphere} → cell s → context s t → cell t
substitute f c = comp1 (context-fst c) (comp1 (substitute+ f (context-pred c)) (context-snd c))
1pres = 1Pol.pres (pred P)
1pres-cell = 1Pol.pres-cell (pred P)
data pres : Type ℓ where
pres-pred : 1pres → pres
disk : {s : 1sphere} → gen P s → cong pres-pred (1pres-cell (1sphere-src s)) ≡ cong pres-pred (1pres-cell (1sphere-tgt s))
pres-cell : {s : 1sphere} → cell s → cong pres-pred (1pres-cell (1sphere-src s)) ≡ cong pres-pred (1pres-cell (1sphere-tgt s))
pres-cell (id f) = refl
pres-cell {s = s , x , z} (cons {y = y} a f) =
cong pres-pred (1pres-cell (1sphere-src (s , x , z))) ≡⟨ cong (λ f → cong pres-pred (1pres-cell f)) (atom-src-eq a) ⟩
cong pres-pred (1pres-cell (1comp0 u (1comp0 (gen-src (atom-gen a)) v))) ≡⟨ {!!} ⟩
cong pres-pred (1pres-cell u ∙ 1pres-cell (gen-src (atom-gen a)) ∙ 1pres-cell v) ≡⟨ {!!} ⟩
u' ∙ cong pres-pred (1pres-cell (gen-src (atom-gen a))) ∙ v' ≡⟨ whisker2 u' (disk (atom-gen a)) v' ⟩
u' ∙ cong pres-pred (1pres-cell (gen-tgt (atom-gen a))) ∙ v' ≡⟨ {!!} ⟩
cong pres-pred (1pres-cell (1sphere-src (s , y , z))) ≡⟨ pres-cell f ⟩
cong pres-pred (1pres-cell (1sphere-tgt (s , x , z))) ∎
where
u = atom-context a .fst
v = atom-context a .snd
u' = cong pres-pred (1pres-cell u)
v' = cong pres-pred (1pres-cell v)
pres-cell {s = s , x , z} (cons' a f) = {!!}
tietze0 : (X : Type ℓ) → (X → 0cell) → Polygraph {ℓ}
tietze0 X f = polygraph (1Pol.tietze0 (pred P) X f) g
where
g : 1Pol.sphere (1Pol.tietze0 (pred P) X f) → Type
g ((inl x , inl y) , u , v) = gen P ((x , y) , ({!u!} , {!v!}))
where
lem : {x y : 0cell} → 1Pol.cell (1Pol.tietze0 (pred P) X f) (inl x , inl y) → 1Pol.cell (P .pred) (x , y)
lem (1Pol.id .(inl _)) = 1Pol.id _
lem {x = x} {z} (1Pol.cons {y = inl y} a f) = 1Pol.cons a (lem f)
lem {x = x} {z} (1Pol.cons {y = inr y} a (1Pol.cons () f))
lem {x = x} {z} (1Pol.cons {y = inr y} a (1Pol.cons' {y = inl y'} b f)) = 1Pol.cons {!!} (1Pol.cons' {!!} (lem f))
lem (1Pol.cons' a f) = {!!}
g ((inl x , inr y) , u , v) = ⊥*
g ((inr x , y) , u , v) = ⊥*
record functor {ℓ : Level} (P Q : Polygraph {ℓ}) : Type ℓ where
constructor func
field
func-pred : 1Pol.functor (pred P) (pred Q)
func-fun : {s : 1sphere P} → gen P s → cell Q (1Pol.functor-sphere func-pred s)
open functor public
functor-0sphere : {P Q : Polygraph {ℓ}} → functor P Q → 0sphere P → 0sphere Q
functor-0sphere f = 1Pol.functor-0sphere (func-pred f)
functor-1sphere : {P Q : Polygraph {ℓ}} → functor P Q → 1sphere P → 1sphere Q
functor-1sphere f = 1Pol.functor-sphere (func-pred f)
functor-1context : {P Q : Polygraph {ℓ}} {s t : 0sphere P} (f : functor P Q) → 1context P s t → 1context Q (functor-0sphere f s) (functor-0sphere f t)
functor-1context f = 1Pol.functor-context (func-pred f)
functor-id : {P : Polygraph {ℓ}} → functor P P
functor-id {P = P} = func 1Pol.functor-id (λ a → cell-gen _ (subst (gen P) (sym p) a))
where
p : {s : 1sphere P} → 1Pol.functor-sphere 1Pol.functor-id s ≡ s
p = ΣPathP (refl , (ΣPathP (1Pol.functor-bind-id _ , 1Pol.functor-bind-id _)))
functor-bind : {P Q : Polygraph {ℓ}} (f : functor P Q) {s : 1sphere P} → cell P s → cell Q (functor-1sphere f s)
functor-bind f (id x) = id _
functor-bind f (cons a x) = comp1 _ (substitute _ (func-fun f (atom-gen a)) {!functor-1context f (atom-context a)!}) (functor-bind f x)
functor-bind f (cons' a x) = comp1 _ {!!} (functor-bind f x)
functor-comp : {P Q R : Polygraph {ℓ}} → functor P Q → functor Q R → functor P R
functor-comp f g = func (1Pol.functor-comp (func-pred f) (func-pred g)) (λ a → functor-bind g {!func-fun f a!})
coherent : Polygraph {ℓ} → Type ℓ
coherent P = {s : 0sphere P} (x y : 1cell P s) → cell P (s , x , y)