Net.LayerLayers of a net.
type t = {inputs : int;Number of inputs.
*)outputs : int;Number of outputs.
*)forward : Vector.t -> Vector.t;Forward computation.
*)backward : Vector.t -> Vector.t -> Vector.t;Backward computation: given the input and the output gradient, update the weights and return the new gradient.
*)}A layer.
val src : t -> intval tgt : t -> intLinear combination of the inputs.
Each output is an affine combination of all the inputs.
val activation : [< `ReLU | `Sigmoid ] -> int -> tApply an activation function on each input.
val softmax : int -> tApply the softmax function (to turn logits into probabilities).
val softmax_ce : int -> int -> tSoftmax followed by cross-entropy.
val tensor : t Extlib.List.t -> tTensor product of lines.