functor (K : Field.T) ->
sig
type t = K.t Stdlib.Weak.t Stdlib.ref * (int -> K.t)
val eq : Series.Make.t -> Series.Make.t -> 'a
val get : Series.Make.t -> int -> K.t
val coeff : Series.Make.t -> int -> K.t
val to_string : Series.Make.t -> string
val make : (int -> K.t) -> Series.Make.t
val zero : Series.Make.t
val one : Series.Make.t
val var : Series.Make.t
val add : Series.Make.t -> Series.Make.t -> Series.Make.t
val sub : Series.Make.t -> Series.Make.t -> Series.Make.t
val mul : Series.Make.t -> Series.Make.t -> Series.Make.t
val expn : Series.Make.t -> int -> Series.Make.t
val hadamard : Series.Make.t -> Series.Make.t -> Series.Make.t
val cmul : K.t -> Series.Make.t -> Series.Make.t
val neg : Series.Make.t -> Series.Make.t
val star : Series.Make.t -> Series.Make.t
val inv : Series.Make.t -> Series.Make.t
module Polynomial :
sig
type t = K.t array
val length : t -> int
val degree : t -> int
val eq : t -> t -> bool
val compact : t -> t
val coeff : t -> int -> K.t
val init : int -> (int -> K.t) -> t
val add : t -> t -> t
val zero : 'a array
val cmul : K.t -> t -> t
val neg : t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val one : K.t array
val to_string : t -> string
val monomial : K.t -> int -> K.t array
end
val polynomial : Series.Make.Polynomial.t -> Series.Make.t
module RationalFractions :
sig
module Polynomial :
functor (F : Field.T) ->
sig
type t = Ring.Polynomial(F).t
val eq : t -> t -> bool
val add : t -> t -> t
val zero : t
val neg : t -> t
val mul : t -> t -> t
val one : t
val to_string : t -> string
val div : t -> t -> t * t
end
type t = Polynomial(K).t * Polynomial(K).t
val gcd : Polynomial(K).t -> Polynomial(K).t -> Polynomial(K).t
val canonize : t -> t
val eq : t -> t -> bool
val add : t -> t -> t
val zero : t
val neg : t -> t
val mul : t -> t -> t
val one : t
val inv : t -> t
val to_string : t -> string
end
val rational : Series.Make.RationalFractions.t -> Series.Make.t
end