functor (X : Alphabet.T) ->
sig
module States :
sig
module S :
sig
type elt = State.t
type t = Set.Make(State).t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val map : (elt -> elt) -> t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val min_elt_opt : t -> elt option
val max_elt : t -> elt
val max_elt_opt : t -> elt option
val choose : t -> elt
val choose_opt : t -> elt option
val split : elt -> t -> t * bool * t
val find : elt -> t -> elt
val find_opt : elt -> t -> elt option
val find_first : (elt -> bool) -> t -> elt
val find_first_opt : (elt -> bool) -> t -> elt option
val find_last : (elt -> bool) -> t -> elt
val find_last_opt : (elt -> bool) -> t -> elt option
val of_list : elt list -> t
val to_seq_from : elt -> t -> elt Seq.t
val to_seq : t -> elt Seq.t
val add_seq : elt Seq.t -> t -> t
val of_seq : elt Seq.t -> t
end
type t = S.t
val eq : t -> t -> bool
val compare : t -> t -> int
val to_string : t -> string
val empty : t
val of_list : S.elt list -> t
val add : t -> State.t -> S.t
val mem : t -> State.t -> bool
val iter : (State.t -> unit) -> t -> unit
end
module T :
sig
module M :
sig
type key = Alphabet.Prod(State)(X).t
type 'a t = 'a Map.Make(Alphabet.Prod(State)(X)).t
val empty : 'a t
val is_empty : 'a t -> bool
val mem : key -> 'a t -> bool
val add : key -> 'a -> 'a t -> 'a t
val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
val singleton : key -> 'a -> 'a t
val remove : key -> 'a t -> 'a t
val merge :
(key -> 'a option -> 'b option -> 'c option) ->
'a t -> 'b t -> 'c t
val union :
(key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int
val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val for_all : (key -> 'a -> bool) -> 'a t -> bool
val exists : (key -> 'a -> bool) -> 'a t -> bool
val filter : (key -> 'a -> bool) -> 'a t -> 'a t
val partition : (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
val cardinal : 'a t -> int
val bindings : 'a t -> (key * 'a) list
val min_binding : 'a t -> key * 'a
val min_binding_opt : 'a t -> (key * 'a) option
val max_binding : 'a t -> key * 'a
val max_binding_opt : 'a t -> (key * 'a) option
val choose : 'a t -> key * 'a
val choose_opt : 'a t -> (key * 'a) option
val split : key -> 'a t -> 'a t * 'a option * 'a t
val find : key -> 'a t -> 'a
val find_opt : key -> 'a t -> 'a option
val find_first : (key -> bool) -> 'a t -> key * 'a
val find_first_opt : (key -> bool) -> 'a t -> (key * 'a) option
val find_last : (key -> bool) -> 'a t -> key * 'a
val find_last_opt : (key -> bool) -> 'a t -> (key * 'a) option
val map : ('a -> 'b) -> 'a t -> 'b t
val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t
val to_seq : 'a t -> (key * 'a) Seq.t
val to_seq_from : key -> 'a t -> (key * 'a) Seq.t
val add_seq : (key * 'a) Seq.t -> 'a t -> 'a t
val of_seq : (key * 'a) Seq.t -> 'a t
end
type t = States.t M.t
val empty : t
val app : t -> Alphabet.Prod(State)(X).t -> States.t
val add : 'a M.t -> M.key -> 'a -> 'a M.t
val iter : (M.key -> 'a -> unit) -> 'a M.t -> unit
end
module Regexp :
sig
type t =
Regexp(X).t =
Letter of X.t
| Union of t * t
| Empty
| Concat of t * t
| Singl
| Star of t
val letter : X.t -> t
val union : t -> t -> t
val empty : t
val concat : t -> t -> t
val star : t -> t
val unions : t list -> t
val to_string : t -> string
val simpl : t -> t
module Series :
sig
type t = Field.Int.t Weak.t ref * (int -> Field.Int.t)
val eq : t -> t -> 'a
val get : t -> int -> Field.Int.t
val coeff : t -> int -> Field.Int.t
val to_string : t -> string
val make : (int -> Field.Int.t) -> t
val zero : t
val one : t
val var : t
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val expn : t -> int -> t
val hadamard : t -> t -> t
val cmul : Field.Int.t -> t -> t
val neg : t -> t
val star : t -> t
val inv : t -> t
module Polynomial :
sig
type t = Field.Int.t array
val length : t -> int
val degree : t -> int
val eq : t -> t -> bool
val compact : t -> t
val coeff : t -> int -> Field.Int.t
val init : int -> (int -> Field.Int.t) -> t
val add : t -> t -> t
val zero : 'a array
val cmul : Field.Int.t -> t -> t
val neg : t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val one : Field.Int.t array
val to_string : t -> string
val monomial : Field.Int.t -> int -> Field.Int.t array
end
val polynomial : Polynomial.t -> t
module RationalFractions :
sig
module Polynomial :
functor (F : Field.T) ->
sig
type t = Ring.Polynomial(F).t
val eq : t -> t -> bool
val add : t -> t -> t
val zero : t
val neg : t -> t
val mul : t -> t -> t
val one : t
val to_string : t -> string
val div : t -> t -> t * t
end
type t = Polynomial(Field.Int).t * Polynomial(Field.Int).t
val gcd :
Polynomial(Field.Int).t ->
Polynomial(Field.Int).t -> Polynomial(Field.Int).t
val canonize : t -> t
val eq : t -> t -> bool
val add : t -> t -> t
val zero : t
val neg : t -> t
val mul : t -> t -> t
val one : t
val inv : t -> t
val to_string : t -> string
end
val rational : RationalFractions.t -> t
end
val series : t -> Series.t
end
type t = {
states : int;
initial : State.t;
terminal : Automaton.Make.States.t;
transitions : Automaton.Make.T.t;
}
val states : Automaton.Make.t -> int
val trans : Automaton.Make.t -> State.t -> X.t -> Automaton.Make.States.t
val add_transition :
Automaton.Make.t -> State.t -> X.t -> State.t -> Automaton.Make.t
val create :
int ->
State.t ->
Automaton.Make.States.S.elt list ->
(State.t * X.t * State.t) list -> Automaton.Make.t
val kleene : Automaton.Make.t -> Automaton.Make.Regexp.t
end