Catoids as a Basis for Algebras of Programs

Georg Struth

University of Sheffield, UK & Collegium de Lyon

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

I've worked on algebras of programs for some years (semirings, Kleene algebras, quantales, relation algebras, ...)

developed variants such as modal/concurrent Kleene algebras and studied their models/properties

formalised algebra/models with proof assistants and built program verification tools based on them

formalising models felt like playing variations on a theme

but which theme?

Kleene's Quest

U.S. AIR FORCE PROJECT RAND

RESEARCH MEMORANDUM

REPRESENTATION OF EVENTS IN NERVE NETS AND FINITE AUTOMATA

S. C. Kleene

RM-704

15 December 1951

シック 単 (中本) (中本) (日)

Kleene Algebra

regular expressions $t ::= 0 \mid 1 \mid a \in \Sigma \mid t + t \mid tt \mid t^*$

languages $X \subseteq \Sigma^*$

interpretation map $L : \operatorname{Reg} Exp_{\Sigma} \to \mathcal{P}\Sigma^*$ defines regular languages

task: axiomatise congruence $s \approx t \Leftrightarrow L(s) = L(t)$

find algebra KA with signature $(+, \cdot, 0, 1, *)$

prove $\mathsf{KA} \vdash s = t \Leftrightarrow L(s) = L(t)$

Conway's Visions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Kleene Algebra Axioms

 $(K, +, \cdot, 0, 1, ^{*})$

$$x + (y + z) = (x + y) + z \qquad x + y = y + x \qquad x + 0 = x \qquad x + x = x$$
$$x(yz) = (xy)z \qquad x1 = x \qquad 1x = x$$
$$x(y + z) = xy + xz \qquad (x + y)z = xz + yz$$
$$x0 = 0 \qquad 0x = 0$$
$$1 + xx^{*} = x^{*} \qquad z + xy \le y \Rightarrow x^{*}z \le y$$
$$1 + x^{*}x = x^{*} \qquad z + yx \le y \Rightarrow zx^{*} \le y$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $x \leq y \Leftrightarrow x + y = y$

and indeed $KA \vdash s = t \Leftrightarrow L(s) = L(t)$

Language Kleene Algebras

soundness proof constructs language KA over free monoid Σ^*

 $(\mathcal{P}\Sigma^*, \cup, \cdot, \emptyset, \{\varepsilon\}, *)$

$$AB = \{vw \mid v \in A, w \in B\}$$

 $A^* = \bigcup_{i \ge 0} A^i \quad \text{for } A^0 = 1, \ A^{i+1} = AA^i$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

or just KA $\mathcal{P}M$ for any monoid M

regular languages are then sub-KAs generated by $\boldsymbol{\Sigma}$

weighted languages $f: \Sigma^* \to K$ form convolution KAs

$$(K^{\Sigma^*}, +, *, 0, id, *)$$

$$(f+g)(w) = f(w) + g(w)$$

$$0(w) = 0$$

$$(f*g)(w) = \sum_{w=u \cdot v} f(u) \cdot g(v)$$

$$id(w) = \delta_{\varepsilon}(w)$$

$$f^{*}(\varepsilon) = f(\varepsilon)^{*}$$

$$f^{*}(w) = f^{*}(\varepsilon) \cdot \sum_{\substack{w=u \cdot v \\ u \neq 1}} f(u) \cdot f^{*}(v) \text{ for } x \neq 1$$

standard languages take weights in KA ${\bf 2}$

Matrix Kleene Algebras

completeness proof formalises automata as K-valued matrices

KAs are closed under matrix formation: for $m, n: I \times I \to K$

$$(m+n)_{ij} = f_{ij} + g_{ij}$$
 $(m \cdot n)_{ij} = \sum_{k} f_{ik} \cdot g_{kj}$ $0_{ij} = 0$ $id_{ij} = \delta_{ij}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the star is somewhat tricky

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad M^* = \begin{pmatrix} f^* & f^*bd^* \\ d^*cf^* & d^* + d^*cf^*bd^* \end{pmatrix} \quad \text{for } f = a + bd^*c$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

partition larger matrices into submatrices with squares along diagonal

Relation Kleene Algebras

binary relations are 2-valued matrices $X \times X \rightarrow 2$

and thus KAs

 $(\mathcal{P}(X \times X), \cup, ;, \emptyset, \Delta, *)$

 $(RS)_{ab} \Leftrightarrow \exists c. \ R_{ac} \land S_{cb}$ $\Delta_{ab} \Leftrightarrow a = b$ $(R^*)_{ab} \Leftrightarrow \exists k \ge 0. \ (R^k)_{ab}$

but we can't write $(RS)_{a,b} = \sum_{c} R_{a,c} \wedge R_{c,b}$ — sums may be infinite!

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Quantales

quantale $(Q, \leq, \cdot, 1)$ consists of complete lattice (Q, \leq) and monoid $(Q, \cdot, 1)$ such that

$$x(\bigvee Y) = \bigvee \{xy \mid y \in Y\}$$
 $(\bigvee X)y = \{xy \mid x \in X\}$

quantales are KAs with $x^* = \bigvee_{i \ge 0} x^i$

examples: $(\mathbb{R}^{\infty}_+, \geq, \max, 0)$ (Lawvere quantale) or $([0, 1], \leq, \cdot, 1)$

we can now construct quantale $Q^{X \times X}$ of Q-valued relations and convolution quantale Q^M for any monoid M

Path Quantales

automata are digraphs $s, t : E \rightarrow V$

paths are sequences $\pi: v_1 \rightarrow v_n = (v_1, e_1, v_2, \dots, v_{n-1}, e_{n-1}, v_n)$

we compose them on matching ends:

we define $AB = \{\pi\pi' \mid \pi \in A, \pi' \in B, t(\pi) = s(\pi')\}$ and $id = \{(v) \mid V\}$

this yields path KA/quantale ... and we can add weights to edges

more generally, Q^{C} forms a category quantale for any (small) category C

Single-Set Categories?

categories. A category is a set C of arrows with two functions $s, t: C \rightarrow C$, called "source" and target", and a partially defined binary operation #, called composition, all subject to the following axioms, for all x, y, and z in C:

The operation x # y is defined iff sx = ty and then

$$s(x \# y) = s y$$
, $t(x \# y) = t x$; (1)

$$x \# s x = x$$
, $t x \# x = x$; (2)

$$(x \# y) \# z = x \# (y \# z)$$
 if either side is defined; (3)

$$ssx = sx = tsx;$$

$$t\,t\,x = t\,x = s\,t\,x\,.\tag{4}$$

Then x is an identity iff x = sx or, equivalently, iff x = tx.

Shuffle Quantales

shuffle $\Sigma^* \times \Sigma^* \to \mathcal{P}\Sigma^*$ is defined, for $a, b \in \Sigma$ and $v, w \in \Sigma^*$ as

 $v \| \varepsilon = \{v\} = \varepsilon \| v \qquad (av) \| (bw) = a(v \| (bw)) \cup b((av) \| w)$

we extend to $\|:\mathcal{P}\Sigma^*\times\mathcal{P}\Sigma^*\to\mathcal{P}\Sigma^*$

$$A \| B = \bigcup \{ v \| w \mid v \in A, w \in B \}$$

we can construct shuffle KA/quantale — and convolution algebras with

$$(f||g)(w) = \sum_{w \in u||v} f(u) \cdot g(v)$$

words under || don't form category!

Catoids

a catoid (X, \odot, s, t) equips set X with multioperation $\odot : X \times X \to \mathcal{P}X$ and source/target maps $s, t : X \to X$ that satisfy

$$\bigcup \{ x \odot v \mid v \in y \odot z \} = \bigcup \{ u \odot z \mid u \in x \odot y \}$$
$$x \odot y \neq \emptyset \Rightarrow t(x) = s(y) \qquad s(x) \odot x = \{x\} \qquad x \odot t(x) = \{x\}$$

if we extend to $\odot : \mathcal{P}X \times \mathcal{P}X \to \mathcal{P}X$

$$A \odot B = \bigcup_{x \in A, y \in B} x \odot y,$$

the first axiom becomes

 $x \odot (y \odot z) = (x \odot y) \odot z$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

a catoid morphism $f : X \to Y$ satisfies

 $f(x \odot_X y) \subseteq f(x) \odot_Y f(y)$ $f \circ s_X = s_Y \circ f$ $f \circ t_X = t_Y \circ f$

it is bounded if $f(x) \in u \odot_Y v$ implies $x \in y \odot_X z$, u = f(y), v = f(z) for some $y, z \in X$

a catoid is functional if $x, x' \in y \odot z \Rightarrow x = x'$

and local if $t(x) = s(y) \Rightarrow x \odot y \neq \emptyset$

a single-set category is a local functional catoid

 $X_s = \{x \mid s(x) = x\} = X_t$ determines objects of (small) category

all structures considered so far are catoids

relations are constructed from the pair groupoid on $X \times X$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

shuffle languages form the shuffle catoid with \parallel total and $s(w) = \varepsilon = t(w)$ for all $w \in \Sigma^*$

there are many other interesting examples

Jónsson-Tarski Duality

(日) (四) (日) (日) (日)

in boolean algebras with operators n-ary modalities in B are dual to n + 1-ary relations in X

we view $: \mathcal{P}X \times \mathcal{P}X \to \mathcal{P}X$ as binary modality and $\odot: X \times X \to \mathcal{P}X$ as ternary relation for powerset structures this duality is almost trivial

 $x \in y \odot z \Leftrightarrow \{x\} \subseteq \{y\} \cdot \{z\}$

atoms in powerset structure Q define relational structure Q_+

relational structure X yields powerset structure X^+ with

 $AB = \bigcup \{ y \odot z \mid y \in A, \ z \in B \}$

Jónsson/Tarski have shown that $(Q_+)^+ \cong Q$ and $(X^+)_+ \cong X$

in fact, the categories of powerset and relational structures are dually equivalent

Jónsson-Tarski duality yields modal correspondences translating identities between X and Q

more generally we can prove 2-out-of-3 correspondences in convolution algebras

$$(f * g)(x) = \bigvee_{x \in y \odot z} f(y) \cdot g(z)$$

$$\mathit{id}_{X_s}(x) = egin{cases} 1 & \mathsf{if} \ x \in X_s \ 0 & \mathsf{otherwise} \end{cases}$$

 $(\bigvee F)(x) = \bigvee \{f(x) \mid f \in F\}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

0(x)=0

Basic Correspondences

theorem:

- 1. if X is catoid and Q quantale, then Q^X is quantale
- 2. if Q^X is quantale and Q supported quantale, then X is catoid
- 3. if Q^X is quantale and X supported catoid, then Q is quantale

"supported" means structures have enough elements for a construction (e.g., $0 \neq 1$ or some composable elements)

we get KA if X is finitely decomposable: $\{(y, z) \mid x \in y \odot z\}$ finite f.a. x

$$(f * (g * h))(x) = \bigvee_{x \in u \odot y} f(u) \cdot \left(\bigvee_{y \in v \odot w} g(v) \cdot h(w)\right)$$
$$= \bigvee_{x \in u \odot (v \odot w)} f(u) \cdot (g(v) \cdot h(w))$$
$$= \bigvee_{x \in (u \odot v) \odot w} (f(u) \cdot g(v)) \cdot h(w)$$
$$= \bigvee_{x \in y \odot w} \left(\bigvee_{y \in u \odot w} f(u) \cdot g(v)\right) \cdot h(w)$$
$$= ((f * g) * h)(x)$$

$$\begin{aligned} x \in u \odot (v \odot w) \Leftrightarrow (\delta_u * (\delta_v * \delta_w))(x) &= 1 \\ \Leftrightarrow ((\delta_u * \delta_v) * \delta_w)(x) &= 1 \\ \Leftrightarrow x \in (u \odot v) \odot w \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Catoids and Modal Quantales

a domain quantale equips a quantale with $\mathit{dom}: \mathit{Q}
ightarrow \mathit{Q}$ satisfying

 $dom(x)x = x \qquad dom(x + y) = dom(x) + dom(y)$ $dom(0) = 0 \qquad dom(x) \le 1 \qquad dom(xdom(y)) = dom(xy)$ a codomain quantale (Q, cod) is a domain quantale (Q^{op}, dom) a modal quantale is a domain and codomain quantale such that $dom \circ cod = cod \qquad cod \circ dom = dom$

in relation quantale $dom(R)_{aa} \Leftrightarrow \exists b. R_{ab}$ and $cod(R)_{aa} \Leftrightarrow \exists b. R_{ba}$

- ロ ト - 4 回 ト - 4 □

domain elements $Q_{dom} = \{x \mid dom(x) = x\}$ form distributive lattice and boolean algebra if Q is boolean

we define modal operators for $x \in Q$ and $p \in Q_{dom}$

 $|x\rangle p = dom(xp) \qquad \langle x|p = cod(px)$ $|x]p = \bigvee \{q \mid |x\rangle q \le p\} \qquad [x|p = \bigvee \{q \mid \langle x|q \le p\}$

this yields dynamic logics/algebras, predicate transformer algebras, boolean algebras with operators

in relation quantale

 $(|R\rangle P)_{aa} \Leftrightarrow \exists b. \ R_{ab} \land P_{bb} \qquad (|R]P)_{aa} \Leftrightarrow \forall b. \ R_{ab} \Rightarrow P_{bb}$

Modal Quantales and Program Correctness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Modal Quantales and Program Correctness

we use relations over program store to verify programs

 $x \in Q$ as programs, + as nondeterministic choice, \cdot as sequential composition, $(-)^*$ as finite iteration

in boolean quantale, for $x \in Q$, $p \in Q_{dom}$

if p then x else $y = px + \overline{p}y$ while p do $x = (px)^*\overline{p}$

- ロ ト - 4 回 ト - 4 □

|x|p calculates wlp of program x from postcondition q

program x is (partially) correct if $p \leq |x|q$

Local Catoids and Modal Quantales

theorem: we have 2-out-of-3 correspondences

$$dom(f) = \bigvee_{x \in X} dom(f(x))\delta_{s(x)}$$

$$cod(f) = \bigvee_{x \in X} cod(f(x))\delta_{t(x)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

for Q = 2

1. if X is local catoid, then $(\mathcal{P}X, \subseteq, \odot, X_s, \mathcal{P}s, \mathcal{P}t)$ is modal quantale 2. if $\mathcal{P}X$ is modal quantale, then X is local catoid

we derive s(xs(y)) = s(xy) and $s \circ r = r$ in X and lift to *dom*-axioms in $\mathcal{P}X$ (other *dom*-axioms don't depend on identities in X)

$$dom(A \odot dom(B)) = \bigcup \{ s(x \odot s(y)) \mid x \in A, y \in B, t(x) = s(s(y)) \}$$
$$= \bigcup \{ s(x \odot y) \mid x \in A, y \in B, t(x) = s(y) \}$$
$$= dom(A \odot B)$$

we can recover the catoid axioms from the atom structure in $\mathcal{P}X$

$$s(x \odot s(y)) = dom(\{x\} \odot dom(\{y\}))$$
$$= dom(\{x\} \odot \{y\})$$
$$= s(x \odot y)$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Models of Modal Quantales

if you want to build a modal convolution quantale, look for a catoid

the lifting is then generic

locality axiom dom(xdom(y)) = dom(xy) is precisely the composition pattern of categories

absorption axiom dom(x)x = x corresponds to left unit axiom of catoids

every category gives rise to modal quantale

Catoids and Concurrent Quantales

word concatenation interacts with shuffle via interchange law

 $(v \| v') \cdot (w \| w') \subseteq (v \cdot w) \| (v' \cdot w')$

we can lift it to $(A || A') \cdot (B || B') \subseteq (A \cdot B) || (A' || B')$

an interchange catoid $(X, \odot_0, s_0, t_0, \odot_1, s_1, t_1)$ consists of two catoids that interact via $(x \odot_1 x') \odot_0 (y \odot_1 y') \subseteq (x \odot_0 y) \odot_1 (x' \odot_0 y')$

an interchange quantale $(Q, \leq, \cdot_0, 1_0, \cdot_1, 1_1)$ consists of two quantales that interact via $(x \cdot_1 x') \cdot_0 (y \cdot_0 y') \leq (x \cdot_0 y) \cdot_1 (x' \cdot_0 y')$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

it suffices to consider correspondences for interchange

Interleaving Concurrency

correspondences yield (weighted) shuffle languages with interchange laws

is commutative, there's a general 2-out-of-3 for commutativity

the shuffle catoid has one single unit arepsilon

in interchange catoids/quantales with one single unit there's a collapse à la Eckmann-Hilton, small interchange laws are derivable

 $x \cdot_0 y \leq x \cdot_1 y \qquad x \cdot_0 (y \cdot_1 z) \leq (x \cdot_0 y) \cdot_1 z \qquad (x \cdot_1 y) \cdot_0 z \leq x \cdot_1 (y \cdot_0 z)$

and commutative variants in catoid/quantale

Non-Interleaving Concurrency

pomsets are a standard model of non-interleaving concurrency

they are composed using serial/parallel composition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

operations \cdot and \parallel share the empty pomset ε as their unit

pomset Q subsumes pomset P, $P \leq Q$, if there exists pomset morphism $Q \rightarrow P$ that is bijective on points

 \leq is partial order on pomsets

we get interchange catoid $(\text{Pom}(\Sigma), \cdot, \Downarrow, \varepsilon)$ with $x \Downarrow y = \{z \mid z \preceq x || y\}$

it lifts to a powerset interchange quantale, the downclosed languages form subquantale

this generalises to convolution quantales (under technical restrictions)

Models of Conurrent Quantales

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

construction of interchange/concurrent quantales motivated this approach

correspondences for interchange catoids/quantales simplified discussions about potential models
Single-Set *n*-Categories

Similarly a 2-category can be considered to be a single set X considered as the set of 2-cells (e.g., of natural transformations). Then the previous 1-cells (the arrows) and the 0-cells (the objects) are just regarded as special "degenerate" 2-cells. On the set X of 2-cells there are then two category structures, the "horizontal" structure $(\#_0, s_0, t_0)$ and the "vertical" structure $(\#_1, s_1, t_1)$. Each satisfies the axioms above for a category structure and in addition

- (i) Every identity for the 0-structure is an identity for the 1-structure;
- (ii) The two category structures commute with each other.

Here, the condition (ii) means, of course, that

 $s_0 s_1 = s_1 s_0$, $s_0 t_1 = t_1 s_0$, $t_0 s_1 = s_1 t_0$, $t_0 t_1 = t_1 t_0$ (7)

and that, for $\alpha, \beta = 0, 1$ or 1, 0, and for all x, y, u, and v

$$(x \#_{\alpha} y) \#_{\beta} (u \#_{\alpha} v) \#_{\alpha} (y \#_{\beta} v) , \qquad (8)$$
$$t_{\alpha} (x \#_{\beta} y) = (t_{\alpha} x) \#_{\beta} (t_{\alpha} y) ,$$
$$s_{\alpha} (x \#_{\beta} y) = (s_{\alpha} x) \#_{\beta} (s_{\alpha} y) ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

whenever both sides are defined.

Since s_0x and t_0x are identities for the 0-structure, they are also identities for the 1-structure by condition (i) above. Hence,

 $s_1 s_0 = s_0$, $t_1 s_0 = s_0$, $s_1 t_0 = t_0$, $t_1 t_0 = t_0$. (9)

With this preparation, we can now readily define a 3-category or more generally an *n*-category for any natural number *n*. The latter is a set X with *n* different category structures $(\#_i, s_i, t_i)$, for i = 0, ..., n - 1, which commute with each other and are such that an identity for structure *i* is also an identity for structures *j* whenever j > i. Put differently, each pair $\#_i$ and $\#_j$ for j > i constitute a 2-category. This readily leads to a definition of the useful notion of an ω -category: i = 0, 1, 2, ...

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

n-Catoids

a (globular) *n*-catoid $(X, \odot_i, s_i, t_i)_{0 \le i < n}$ consists of *n*-catoids (X, \odot_i, s_i, t_i) that interact, for all $0 \le i < j < n$, via

$$s_{i} \circ s_{j} = s_{j} \circ s_{i} \qquad s_{i} \circ t_{j} = t_{j} \circ s_{i} \qquad t_{i} \circ s_{j} = s_{j} \circ t_{i} \qquad t_{i} \circ t_{j} = t_{j} \circ t_{i} (w \odot_{j} x) \odot_{i} (y \odot_{j} z) \subseteq (w \odot_{i} y) \odot_{j} (x \odot_{i} z) s_{j}(x \odot_{i} y) = s_{j}(x) \odot_{i} s_{j}(y) \qquad t_{j}(x \odot_{i} y) = t_{j}(x) \odot_{i} t_{j}(y) s_{i}(x \odot_{j} y) \subseteq s_{i}(x) \odot_{j} s_{i}(y) \qquad t_{i}(x \odot_{j} y) \subseteq t_{i}(x) \odot_{j} t_{i}(y) s_{j} \circ s_{i} = s_{i} \qquad s_{j} \circ t_{i} = t_{i} \qquad t_{j} \circ s_{i} = s_{i} \qquad t_{j} \circ t_{i} = t_{i}$$

a single-set *n*-category is a local functional *n*-catoid

 $s_1(x \odot_0 y) = s_1(x) \odot_0 s_1(y)$ and $t_1(x \odot_0 y) = t_1(x) \odot_0 t_1(y)$

 $s_0(x \odot_1 y) \subseteq s_0(x) \odot_1 s_0(y)$ and $t_0(x \odot_1 y) \subseteq t_0(x) \odot_1 t_0(y)$

(日)

ж

$(w \odot_1 x) \odot_0 (y \odot_1 z) \subseteq (w \odot_0 y) \odot_1 (x \odot_0 z)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Reduced *n*-Catoid Axioms

the following axioms are irredundant and subsume the previous ones

 $(w \odot_j x) \odot_i (y \odot_j z) \subseteq (w \odot_i y) \odot_j (x \odot_i z)$ $s_j(x \odot_i y) = s_j(x) \odot_i s_j(y) \qquad t_j(x \odot_i y) = t_j(x) \odot_i t_j(y)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

this streamlines correspondence proofs

n-Quantales

a (globular) n-quantale $(Q, \leq, \cdot_i, 1_i, dom_i, cod_i)_{0 \leq i < n}$ consists of n modal quantales $(Q, \leq, \cdot_i, 1_i, dom_i, cod_i)$ that interact, for all $0 \leq i < j < n$, via

 $(w \cdot_j x) \cdot_i (y \cdot_j z) \le (w \cdot_i y) \cdot_j (x \cdot_i z)$ $dom_j(x \cdot_i y) = dom_j(x) \cdot_i dom_j(y) \qquad cod_j(x \cdot_i y) = cod_j(x) \cdot_i cod_j(y)$ $dom_i(x \cdot_j y) \le dom_i(x) \cdot_j dom_i(y) \qquad cod_i(x \cdot_j y) \le cod_i(x) \cdot_j cod_i(y)$ $dom_j(dom_i(x)) = dom_i(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

n-Catoids and *n*-Quantales

relative to previous correspondences it remains to check the globular ones

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Higher Rewriting

(modal) Kleene algebras allow proving facts from abstract rewriting (Church-Rosser theorem, Newman's lemma, ...)

n-Kleene algebras allow proving analogous fact from higher rewriting (using free (n, p)-categories constructed using polygraphs/computads)

our correspondences justify the axioms of *n*-Kleene algebra firmly in terms of (free) *n*-categories

we can justify those of (n, p)-Kleene algebras by integrating (single-set) groupoids

Jónnson-Tarski knew about correspondence between groupoids and relation algebras

single-set approach makes approach easily accessible to proof assistants and even $\mathsf{SMT}\text{-}\mathsf{solvers}$

Conclusion

catoids simplify the construction of models for algebras of programs

they often tell where axioms in algebras of programs come from

they provide a particular way of dealing with partiality (in algebra or category theory)

they might allow formaling higher categories using automated theorem provers/SMT solvers \ldots but this is speculation

- ロ ト - 4 回 ト - 4 □

Thanks

Cameron Calk, James Cranch, Simon Doherty, Brijesh Dongol, Uli Fahrenberg, Éric Goubault, Ian Hayes, Christian Johansen, Philippe Malbos, Damien Pous, Krzysztof Ziemiański

Papers

C. Calk, P. Malbos, G. Struth, D. Pous. Catoids and Globular Convolution Quantales (manuscript)

U. Fahrenberg, C. Johansen, G. Struth, K. Ziemiański. Ir-Multisemigroups and Modal Convolution Algebras. CoRR abs/2105.00188, 2021

J. Cranch, S. Doherty, G. Struth. Convolution and Concurrency, MSCS, 2021

B. Dongol, I. J. Hayes, G. Struth. Convolution Algebras: Relational Convolution, Generalised Modalities and Incidence Algebras, *LMCS*, 2021

C. Calk, U. Fahrenberg, C. Johansen, G. Struth, K. Ziemiański. Ir-Multisemigroups, Modal Quantales and the Origin of Locality. *RAMICS 2021*

C. Calk, É. Goubault, P. Malbos, G. Struth. Algebraic Coherent Confluence and Higher-Dimensional Globular Kleene Algebra, CoRR abs/2006.16129, 2020

B. Dongol, I. J. Hayes, G. Struth. Convolution as a Unifying Concept: Applications in Separation Logic, Interval Calculi and Concurrency, *ACM TOCL*, 2016