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Let o(x,t) : X x R — X be a continuous flow on a compact
metric space.

Let o(x,t) : X x R — X be a continuous flow on a compact metric
space. Set S is invariant if S =invS = {x € S| ¢(x,R) C S}.

A compact set N is an isolating neighborhood if inv N C int V.

An invariant set S which admits an isolating neighborhood such
that inv N = S is called an isolated invariant set.




Continuation

Let vp(x,t) : X x R — X be a flow parametrized by p € [a, b] C R.
An isolated invariant set S, in ¢, continues to another isolated invariant
set Sp in @y if there exist a sequence of compact sets Ny, Ny, ..., Ny and
a sequence of intervals {[a;, b;]] C [a,b] | i €0,1,...,k} such that

® 3 = aand by = b,

® [a;, b N[aiy1, biv1] #0 forall i€ {0,1,..., k—1},

® ; is an isolating neighbourhood in @, (x, t) with p € [a;, bi],
® inv,,(No) = S, and invy,, (Nk) = Sp.

Theoerm 1.7, Conley & Easton, 1971

Denote ®(X) a space of flows ¢ : X x R — X on the compact metric
space X endowed with the compact open topology.

Let NV be an isolating neighborhood for a flow ¢ € ®(X). Then there
exists an open neighborhood U, C ®(X) such that N is an isolating
neighborhood for every ¢ € U,,.

























Multivector fields theory



Multivector as a dynamical black box
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A compact set N is a Wazewski set if N~ := {x € N | Veso¢(x, [0, €]) & N} isJ
closed.

Wazewski principle
If N is a Wazewski set and H.(N, N~) # 0 then inv N # (.

& ¢ 0
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Alexandrov Theorem

Alexandrov Theorem (1937)

For a preorder < on a finite set X, there is a topology 7< on X
whose open sets are the upper sets with respect to <. For a
topology T on a finite set X, there is a preorder <7 where x <7 y
if and only if x € clyy. The correspondences 7 — <7 and

<+ T < are mutually inverse. Under these correspondences
continuous maps are transformed into order-preserving maps and
vice versa. Moreover, the topology 7 is To (Kolmogorov) if and
only if the preorder <7 is a partial order.

Ftwh[a ‘f’afalogou-‘ L=> av‘i‘a”a Or‘c‘JevecI
speces
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Simplicial complex as a finite topological space




Homology of finite topological spaces

McCord Theorem, (McCord, 1966)

There exists a map
H(x,T) - "C(XaTN - (XaT)

such that it is continuous and a weak homotopy equivalence.
Moreover, if f: (X, Tx) — (Y, Ty) is a continuous map of two
finite To topological spaces, then the following diagrams commute:

IC(f K(f
(X, Tx)l (v, 7)) H OO TN 225 1 ey, 7))
l“(Xwa) lM(Y:TY) lM(XvTX)* l”(yﬂ""v)*
(X, Tx) —— (Y. Ty) H(X, Tx) —— H(Y,Ty)

Let X be a finite topological space and A C X. Then

H(X) = H(IK(X)]) = HA(K(X)).

v

H(X, A) = H(IK(X)|, [K(A)]) = HA(/C(X)Jf(A))




Let (P, <) be a partial order.

A C P is an upper set (open) iff x € A and y > x implies y € A.
A C P is a down set (closed) iff x € A and y < x implies y € A.
A C P is convex (locally closed) iff x < y < z with

x,z € A, y € P implies y € A.
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Combinatorial Multivector Fields for FTop

Let X be a finite topological space.

A multivector is a locally closed subset of X.
Combinatorial multivector field (MVF) V on X is a collection
of multivectors, such that V is a partition of X.
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Essential solutions and invariant sets

A map ¢ : Z — X'is a full solution for V iff V,_7 (i + 1) € Fu(p(i)).
We denote a set of full solutions in X by Sol(X).

A multivector V' € V is critical if H(cl V,mo V) # 0, otherwise V is
regular.

A full solution ¢ : Z — X is essential if for every regular x € im ¢ the
set {t € Z | o(t) & [x]y} is either left- and right-unbounded. A set of all
essential solutions in a set A C X with ¢(0) = x is denoted eSol(x, A).




Isolated invariant sets

Invariant part of AC X is
Inv(A) := {x € A| eSol(x, A) # 0}

We say that A is invariant iff Inv(A) = A.

v

A closed set N isolates an invariant set S C N if the following two
conditions holds

a) every path in N with endpoints in S is a path in S,

b) nv(S) C N.
In this case, we also say that N is an isolating set for S. An
invariant set S is isolated if there exists a closed set N meeting
the above conditions.




Conley index

Let S be isolated invariant set under V, and let P and E denote closed
sets where E C P. If the following conditions hold, then (P, E) is an

index pair for S: //\ )A
1) Fv(P\E)CP, / g ?
2) FY(E)NP CE, \ )
3) S=invy(P\ E). v W )

The combinatorial homology Conley index of an isolated invariant set
S is defined as Con(S) := H(P, E), where (P, E) is an index pair for S.

Theorem 5.16 (LKMW, 2020)

Let (P, E) and (P’, E’) be index pairs for an isolated invariant set S then
H(P,E) = H(P',E').
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Combinatorial perturbation




Multivector fields space

For two families of sets A and B we write A C B if for every
A € A there exists a B € B such that A C B.

v

An atomic rearrangements of multivector fields:

® V is an atomic refinement of Wif VC W and |[V\W| =1
® YV is an atomic coarsening of W if V J W and |[V\ W| =2 )

_--=0




MVF(X) - a family of all multivector fields on X with a topology
induced by C. J

X, / N
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Combinatorial
continuation of an isolated
invariant set



Combinatorial continuation of an isolated
invariant set

Let S1, Sy, ..., S, denote a sequence of isolated invariant sets
under the multivector fields V1, V2, ..., V,, where each V; is
defined on a fixed simplicial complex K. We say that isolated
invariant set S; continues to isolated invariant set S, whenever
there exists a sequence of index pairs (P1, E1), (P2, E2), ...,
(Pn—1, En—1) where (P;, E;) is an index pair for both S; and S;1.
Such a sequence is a sequence of connecting index pairs.
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The tracking
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The tracking
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The tracking

U, v, U, VY, -.. U,

§ S, S, =S, .- S,

(P, E.) =LY (Re) ... (?..L.)



Tracking Protocol

<A'>U— 5 e wrmnal LOU.\“AG Josg,i sd

Attempt to track via continuation:
1 If V' is an atomic refinement of V, then take S’ := invy»(S).

2 If V' is an atomic coarsening of V), and the unique merged
multivector V has the property that V C S, then take
S i=invy(S).

3 If V' is an atomic coarsening of V, and the unique merged
multivector V has the property that V NS = (), then take
S :=invyy(S) = S.

4 If V' is an atomic coarsening of V and the unique merged
multivector V satisfies the formulae VNS # (0 and V £ S,
then consider A= (SU V)y». If invy(A) = S, then take
S :=invy (A).

5 Else, it is impossible to track via continuation.



Theorem 11 (Dey, L., Mrozek, Slechta; 2022)

Let V and V' denote multivector fields where V' is an atomic refinement of V. Let A
be a V-compatible and convex set. The pair (cl(A), mo(A)) is an index pair for both
invy,(A) under V and invy (A) under V'.

Theorem 12 (Dey, L., Mrozek, Slechta; 2022)

Let V and V'’ denote multivector fields where V'’ is an atomic coarsening of V. Let A
be a convex and V-compatible set, and let V € V' be the unique merged multivector.
If V.C Aor VN A=, then (cl(A), mo(A)) is an index pair for both invy,(A) and
invyr (A).

Theorem 13 (Dey, L., Mrozek, Slechta; 2022)

Let S denote an isolated invariant set under V and let V' denote an atomic coarsening
of V where the unique merged multivector V € V' \ V satisfies the formulae

VNS #0and VZS. Furthermore, let A:= (SU V). If S # invy,(A), then there
does not exist an isolated invariant set S’ under V'’ for which there is an index pair
(P, E) satisfying invyy(P\ E) = S and invy/(P\ E) = S'.






















Continuation of an isolated invariant set































The canonicity of the choice

Theorem 25; Dey, L., Mrozek, Slechta (2022)

Let S be an isolated invariant set under V, and let S’ denote an
isolated invariant set under V'’ that is obtained by applying the
Tracking Protocol. If S’ is obtained via Steps 1, 2, or 3, then
S'CS.

Theorem 26; Dey, L., Mrozek, Slechta (2022)

Let S be an isolated invariant set under V, and let S’ denote an
isolated invariant set under )’ that is obtained by applying the
Tracking Protocol. If S is obtained via Step 4 then S C S’ or
S'CS.




Continuation in terms of persistence
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Continuation in terms of persistence

v, v, U, VU, -.. U,

S5, =S, =S, ... S,
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(P, E) ) (C| S, moS) C ('D/7 E/)



(P,E) D (ddS,moS) C (P, E)

(cI(5), mo($)) €
(va (cI(S), P'), pfyr (mO( ) P')) 2
(P" v pfy(cl(S), P'), E' N pfyr(mo(S), P')) € (P, EY)



(P,E) D (cIS,moS) C (P, E)

(P 1 pfy,(cl(S), P), E N pfy(mo(S), P))

(pfy(cl(S), P), pfy(mo(S), P))

(cl(S), mo(S)) C

(pfy(cl(S), P'), pfyr(mo(S), P)) 2

(P" N pfy(cl(S), P'), E' N pfyr(mo(S), P")) C (P, E)



Connecting index pairs

Let S be isolated invariant set under V isolated by N. Let P and E be
closed sets such that £ C P. If the following conditions hold, then (P, E)
is an index pair in N for S:

1) Mu(P\E)C N,
2) My(E)nN CE,
3) Ny(P)NN C P,
4) S=invy(P\ E).

Theorem 21; Dey, L., Mrozek, Slechta (2022)

Let (P, E) and (P’, E’) denote index pairs for S in N under V. The pair
(PN P ENE’)is an index pair for S in N under V.




Theorem 28; Dey, L., Mrozek, Slechta (2022)

Let (P, E) and (P', E’) denote index pairs for S under V such that
P C P and E C E’. Then the inclusion i : (P,E) < (P', E')
induces an isomorphism in homology.

The push-forward of a set A in N is defined as
pfy,(A, N) :={x € N|3p € Sol(x, N), k € N p(0) € A, p(k) = x}.

4

(cl($),mo(5)) <€ (pfyr(cl(S), P'), pfyr(mo(S), P))
2 (P Npfy(cl(S), P), E" 1 pfyr(mo(S), P))
C

(P, E')
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(P,E) PN pfvi(cl(S) P), E N pfy,(mo(S), P))
pfy(cl(S), P), pfy,(mo(S), P))

(

( )
(cl(S), mo(S)) C
(

(

I N

pfyr (cl(S), P'), pfyr(mo(S), P')) 2
P' N pfy(cl(S), P'), E' N pfy(mo(S), P')) C (P, E')

Theorem 22; Dey, L., Mrozek, Slechta (2022)

For every k > 0, the k-dimensional barcode of a connecting

sequence of index pairs {(P;, E;)}!_; has m bars [1, n] if
dim Hk(Pl, E1) = m.




Beyond continuation



Tracking Protocol - continuation

If it is impossible to track via continuation, then attempt to track

via persistence:
6 If A:=(SU V)y, then take S’ :=invyy(A). If S and S’ have
a common isolating set, then use the technique from the next
slide to find a zigzag filtration connecting them.

7 Otherwise, there is no natural choice of S'.













The canonicity of the choice

Theorem 23; Dey, L., Mrozek, Slechta (2022)

Let S’ denote an isolated invariant set under V' that is obtained
from applying Step 6 of the Tracking Protocol to the isolated
invariant set S under V. If S” is an isolated invariant set under V'’
where S C S then S’ C S”.




(cI(S),m
(pfy(cl(S),

o(5)) €

B) N pfy(cl(S"), B), pfy(mo(S),

C (pf

(pfy(cl($), B), pfy,(mo(S), B)

v (cl(S"), B), pfyr(mo(S'),



(P, E) 2 (PN pfy(cl(S), P), E N pfy,(mo(S), P))
(pfy(cl(S), P), pfyy(mo(S), P)) 2 (cl(S), mo(S))
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