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Let Ï(x , t) : X ◊ R æ X be a continuous flow on a compact

metric space.

Let Ï(x , t) : X ◊R æ X be a continuous flow on a compact metric

space. Set S is invariant if S = inv S := {x œ S | Ï(x ,R) ™ S}.

A compact set N is an isolating neighborhood if inv N ™ int N.

An invariant set S which admits an isolating neighborhood such

that inv N = S is called an isolated invariant set.



Continuation

Let Ïp(x , t) : X ◊ R æ X be a flow parametrized by p œ [a, b] µ R.

An isolated invariant set Sa in Ïa continues to another isolated invariant

set Sb in Ïb if there exist a sequence of compact sets N0, N1, . . . , Nk and

a sequence of intervals {[ai , bi ] µ [a, b] | i œ 0, 1, . . . , k} such that

• a0 = a and bk = b,

• [ai , bi ] fl [ai+1, bi+1] ”= ÿ for all i œ {0, 1, . . . , k ≠ 1},

• Ni is an isolating neighbourhood in Ïp(x , t) with p œ [ai , bi ],

• invÏa
(N0) = Sa and invÏb

(Nk) = Sb.

Theoerm 1.7, Conley & Easton, 1971
Denote �(X ) a space of flows Ï : X ◊ R æ X on the compact metric

space X endowed with the compact open topology.

Let N be an isolating neighborhood for a flow Ï œ �(X ). Then there

exists an open neighborhood UÏ µ �(X ) such that N is an isolating

neighborhood for every Â œ UÏ.

















Multivector fields theory



Multivector as a dynamical black box
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A compact set N is a Waøewski set if N
≠ := {x œ N | ’‘>0Ï(x , [0, ‘]) ”µ N} is

closed.

Waøewski principle
If N is a Waøewski set and Hú(N, N

≠) ”= 0 then inv N ”= ÿ.
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Alexandrov Theorem

Alexandrov Theorem (1937)
For a preorder Æ on a finite set X , there is a topology T Æ on X

whose open sets are the upper sets with respect to Æ. For a

topology T on a finite set X , there is a preorder ÆT where x ÆT y

if and only if x œ clT y . The correspondences T ‘æ ÆT and

Æ ‘æ T Æ are mutually inverse. Under these correspondences

continuous maps are transformed into order-preserving maps and

vice versa. Moreover, the topology T is T0 (Kolmogorov) if and

only if the preorder ÆT is a partial order.



Simplicial complex as a finite topological space



Homology of finite topological spaces

McCord Theorem, (McCord, 1966)
There exists a map

µ(X ,T ) : |K(X , T )| æ (X , T )

such that it is continuous and a weak homotopy equivalence.

Moreover, if f : (X , T X ) æ (Y , T Y ) is a continuous map of two

finite T0 topological spaces, then the following diagrams commute:

|K(X , T X )| |K(Y , T Y )|

(X , T X ) (Y , T Y )

|K(f )|

µ(X,T
X

) µ(Y ,T
Y

)

f

H (|K(X , T X )|) H (|K(Y , T Y )|)

H(X , T X ) H(Y , T Y )

|K(f )|ú

µ(X,T
X

)ú
µ(Y ,T

Y
)ú

fú

Let X be a finite topological space and A µ X . Then

H(X ) ≥= H(|K(X )|) ≥= H
�

(K(X )).

H(X , A) ≥= H(|K(X )| , |K(A)|) ≥= H
�

(K(X ), K(A)).



Let (P, Æ) be a partial order.

A µ P is an upper set (open) i� x œ A and y Ø x implies y œ A.

A µ P is a down set (closed) i� x œ A and y Æ x implies y œ A.

A µ P is convex (locally closed) i� x Æ y Æ z with

x , z œ A, y œ P implies y œ A.
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Combinatorial Multivector Fields for FTop

Let X be a finite topological space.

A multivector is a locally closed subset of X .

Combinatorial multivector field (MVF) V on X is a collection

of multivectors, such that V is a partition of X .



Dynamics of MVF for FTop



Dynamics of MVF for FTop

Fok) :=[x]uudx where [✗Tv is
the unique mu
to which ✗ belongs
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Dynamics of MVF for FTop
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Essential solutions and invariant sets

A map Ï : Z æ X is a full solution for V i� ’
iœZ Ï(i + 1) œ FV(Ï(i)).

We denote a set of full solutions in X by Sol(X ).

A multivector V œ V is critical if H(cl V , mo V ) ”= 0, otherwise V is

regular.

A full solution Ï : Z æ X is essential if for every regular x œ im Ï the

set {t œ Z | Ï(t) ”œ [x ]V} is either left- and right-unbounded. A set of all

essential solutions in a set A ™ X with Ï(0) = x is denoted eSol(x , A).

•

.
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Isolated invariant sets

Invariant part of A ™ X is

Inv(A) := {x œ A | eSol(x , A) ”= ÿ}

We say that A is invariant i� Inv(A) = A.

A closed set N isolates an invariant set S ™ N if the following two

conditions holds

a) every path in N with endpoints in S is a path in S,

b) �V(S) ™ N.

In this case, we also say that N is an isolating set for S. An

invariant set S is isolated if there exists a closed set N meeting

the above conditions.

⑧ n



Conley index

Let S be isolated invariant set under V, and let P and E denote closed

sets where E ™ P. If the following conditions hold, then (P, E ) is an

index pair for S:

1) FV(P \ E ) ™ P,

2) FV(E ) fl P ™ E ,

3) S = invV(P \ E ).

The combinatorial homology Conley index of an isolated invariant set

S is defined as Con(S) := H(P, E ), where (P, E ) is an index pair for S.

Theorem 5.16 (LKMW, 2020)
Let (P, E ) and (P

Õ, E
Õ
) be index pairs for an isolated invariant set S then

H(P, E ) ≥= H(P
Õ, E

Õ
).
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Multivector fields space

For two families of sets A and B we write A ı B if for every

A œ A there exists a B œ B such that A ™ B.

An atomic rearrangements of multivector fields:
• V is an atomic refinement of W if V ı W and |V \ W| = 1

• V is an atomic coarsening of W if V ˆ W and |V \ W| = 2

•-ofrefi!E.•i
._
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MVF(X ) - a family of all multivector fields on X with a topology

induced by ı.
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Combinatorial

continuation of an isolated

invariant set



Combinatorial continuation of an isolated

invariant set

Let S1, S2, . . . , Sn denote a sequence of isolated invariant sets

under the multivector fields V1, V2, . . . , Vn, where each V i is

defined on a fixed simplicial complex K . We say that isolated

invariant set S1 continues to isolated invariant set Sn whenever

there exists a sequence of index pairs (P1, E1), (P2, E2), . . . ,

(Pn≠1, En≠1) where (Pi , Ei) is an index pair for both Si and Si+1.

Such a sequence is a sequence of connecting index pairs.
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Tracking Protocol

Attempt to track via continuation:

1 If V Õ
is an atomic refinement of V, then take S

Õ
:= invV Õ(S).

2 If V Õ
is an atomic coarsening of V, and the unique merged

multivector V has the property that V ™ S, then take

S
Õ
:= invV Õ(S).

3 If V Õ
is an atomic coarsening of V, and the unique merged

multivector V has the property that V fl S = ÿ, then take

S
Õ
:= invV Õ(S) = S.

4 If V Õ
is an atomic coarsening of V and the unique merged

multivector V satisfies the formulae V fl S ”= ÿ and V ”™ S,

then consider A = ÈS fi V ÍV Õ . If invV(A) = S, then take

S
Õ
:= invV Õ(A).

5 Else, it is impossible to track via continuation.

<A≥ is the minimal locally closed
set



Theorem 11 (Dey, L., Mrozek, Slechta; 2022)
Let V and V Õ denote multivector fields where V Õ is an atomic refinement of V. Let A

be a V-compatible and convex set. The pair (cl(A), mo(A)) is an index pair for both
invV (A) under V and invVÕ (A) under V Õ.

Theorem 12 (Dey, L., Mrozek, Slechta; 2022)
Let V and V Õ denote multivector fields where V Õ is an atomic coarsening of V. Let A

be a convex and V-compatible set, and let V œ V Õ be the unique merged multivector.
If V ™ A or V fl A = ÿ, then (cl(A), mo(A)) is an index pair for both invV (A) and
invVÕ (A).

Theorem 13 (Dey, L., Mrozek, Slechta; 2022)
Let S denote an isolated invariant set under V and let V Õ denote an atomic coarsening
of V where the unique merged multivector V œ V Õ \ V satisfies the formulae
V fl S ”= ÿ and V ”™ S. Furthermore, let A := ÈS fi V ÍVÕ . If S ”= invV (A), then there
does not exist an isolated invariant set S

Õ under V Õ for which there is an index pair
(P, E) satisfying invV (P \ E) = S and invVÕ (P \ E) = S

Õ.
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Continuation of an isolated invariant set
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The canonicity of the choice

Theorem 25; Dey, L., Mrozek, Slechta (2022)
Let S be an isolated invariant set under V, and let S

Õ
denote an

isolated invariant set under V Õ
that is obtained by applying the

Tracking Protocol. If S
Õ

is obtained via Steps 1, 2, or 3, then

S
Õ ™ S.

Theorem 26; Dey, L., Mrozek, Slechta (2022)
Let S be an isolated invariant set under V, and let S

Õ
denote an

isolated invariant set under V Õ
that is obtained by applying the

Tracking Protocol. If S
Õ

is obtained via Step 4 then S ™ S
Õ

or

S
Õ ™ S.
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(P , E ) ´ (cl S , mo S) ™ (P Õ, E Õ)

(P, E ) ´ (P fl pfV i
(cl(S), P), E fl pfV(mo(S), P))

™ (pfV(cl(S), P), pfV(mo(S), P))

´ (cl(S), mo(S)) ™
(pfV Õ(cl(S), P

Õ
), pfV Õ(mo(S), P

Õ
)) ´

(P
Õ fl pfV Õ(cl(S), P

Õ
), E

Õ fl pfV Õ(mo(S), P
Õ
)) ™ (P

Õ, E
Õ
)
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Connecting index pairs

Let S be isolated invariant set under V isolated by N. Let P and E be

closed sets such that E ™ P. If the following conditions hold, then (P, E )

is an index pair in N for S:

1) �V(P \ E ) ™ N,

2) �V(E ) fl N ™ E ,

3) �V(P) fl N ™ P,

4) S = invV(P \ E ).

Theorem 21; Dey, L., Mrozek, Slechta (2022)
Let (P, E ) and (P

Õ, E
Õ
) denote index pairs for S in N under V. The pair

(P fl P
Õ, E fl E

Õ
) is an index pair for S in N under V.

:☒E



Theorem 28; Dey, L., Mrozek, Slechta (2022)
Let (P, E ) and (P

Õ, E
Õ
) denote index pairs for S under V such that

P ™ P
Õ

and E ™ E
Õ
. Then the inclusion i : (P, E ) Òæ (P

Õ, E
Õ
)

induces an isomorphism in homology.

The push-forward of a set A in N is defined as

pfV(A, N) := {x œ N | ÷fl œ Sol(x , N), k œ N fl(0) œ A, fl(k) = x}.

(cl(S), mo(S)) ™ (pfV Õ(cl(S), P
Õ
), pfV Õ(mo(S), P

Õ
))

´ (P
Õ fl pfV Õ(cl(S), P

Õ
), E

Õ fl pfV Õ(mo(S), P
Õ
))

™ (P
Õ, E

Õ
)





(P, E) in N



Cds , mos)



(IS ,
mo 5) ≤ (pf (ISN) , pflmos ,ND



(pf (ISN) nP, pflmos.mn E)







(P, E ) ´ (P fl pfV i
(cl(S), P), E fl pfV(mo(S), P))

™ (pfV(cl(S), P), pfV(mo(S), P))

´ (cl(S), mo(S)) ™
(pfV Õ(cl(S), P

Õ
), pfV Õ(mo(S), P

Õ
)) ´

(P
Õ fl pfV Õ(cl(S), P

Õ
), E

Õ fl pfV Õ(mo(S), P
Õ
)) ™ (P

Õ, E
Õ
)

Theorem 22; Dey, L., Mrozek, Slechta (2022)
For every k Ø 0, the k-dimensional barcode of a connecting

sequence of index pairs {(Pi , Ei)}n
i=1 has m bars [1, n] if

dim Hk(P1, E1) = m.



Beyond continuation



Tracking Protocol - continuation

If it is impossible to track via continuation, then attempt to track

via persistence:

6 If A := ÈS fi V ÍV , then take S
Õ
:= invV Õ(A). If S and S

Õ
have

a common isolating set, then use the technique from the next

slide to find a zigzag filtration connecting them.

7 Otherwise, there is no natural choice of S
Õ
.
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The canonicity of the choice

Theorem 23; Dey, L., Mrozek, Slechta (2022)
Let S

Õ
denote an isolated invariant set under V Õ

that is obtained

from applying Step 6 of the Tracking Protocol to the isolated

invariant set S under V. If S
ÕÕ

is an isolated invariant set under V
Õ

where S ™ S
ÕÕ
, then S

Õ ™ S
ÕÕ
.



(cl(S), mo(S)) ™ (pfV(cl(S), B), pfV(mo(S), B)) ´
(pfV(cl(S), B) fl pfV Õ(cl(S

Õ
), B), pfV(mo(S), B) fl pfV Õ(mo(S

Õ
), B))

™ (pfV Õ(cl(S
Õ
), B), pfV Õ(mo(S

Õ
), B)) ´ (cl(S

Õ
), mo(S

Õ
))



(P, E ) ´ (P fl pfV(cl(S), P), E fl pfV(mo(S), P)) ™
(pfV(cl(S), P), pfV(mo(S), P)) ´ (cl(S), mo(S))
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Thank you!
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