## Tracking Dynamical Features via Continuation and Persistence

Michał Lipiński

Dioscuri Centre in TDA, Polish Academy of Sciences, Warszawa Jagiellonian University, Kraków

joint work with: T.Dey, M.Mrozek, R.Slechta

GETCO 2022, Paris 31.05.2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ふして 山田 ふぼやえばや 山下



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで





・ロト・日本・日本・日本・日本・日本



・ロト・日本・日本・日本・日本・日本







▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Let  $\varphi(x,t): X \times \mathbb{R} \to X$  be a continuous flow on a compact metric space.

Let  $\varphi(x, t) : X \times \mathbb{R} \to X$  be a continuous flow on a compact metric space. Set *S* is **invariant** if  $S = \text{inv } S := \{x \in S \mid \varphi(x, \mathbb{R}) \subseteq S\}$ .

A compact set N is an **isolating neighborhood** if inv  $N \subseteq \text{int } N$ . An invariant set S which admits an isolating neighborhood such that inv N = S is called an **isolated invariant set**.

## Continuation

Let  $\varphi_p(x, t) : X \times \mathbb{R} \to X$  be a flow parametrized by  $p \in [a, b] \subset \mathbb{R}$ . An isolated invariant set  $S_a$  in  $\varphi_a$  **continues** to another isolated invariant set  $S_b$  in  $\varphi_b$  if there exist a sequence of compact sets  $N_0, N_1, \ldots, N_k$  and a sequence of intervals  $\{[a_i, b_i] \subset [a, b] \mid i \in 0, 1, \ldots, k\}$  such that

- $a_0 = a$  and  $b_k = b$ ,
- $[a_i, b_i] \cap [a_{i+1}, b_{i+1}] \neq \emptyset$  for all  $i \in \{0, 1, \dots, k-1\}$ ,
- $N_i$  is an isolating neighbourhood in  $\varphi_p(x, t)$  with  $p \in [a_i, b_i]$ ,
- $\operatorname{inv}_{\varphi_a}(N_0) = S_a$  and  $\operatorname{inv}_{\varphi_b}(N_k) = S_b$ .

#### Theoerm 1.7, Conley & Easton, 1971

Denote  $\Phi(X)$  a space of flows  $\varphi : X \times \mathbb{R} \to X$  on the compact metric space X endowed with the compact open topology. Let N be an isolating neighborhood for a flow  $\varphi \in \Phi(X)$ . Then there exists an open neighborhood  $U_{\varphi} \subset \Phi(X)$  such that N is an isolating neighborhood for every  $\psi \in U_{\varphi}$ .



▲□▶ ▲圖▶ ▲国▶ ▲国▶

æ



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●











▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# **Multivector fields theory**

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで











A compact set N is a Ważewski set if  $N^- := \{x \in N \mid \forall_{\epsilon > 0} \varphi(x, [0, \epsilon]) \not\subset N\}$  is closed.

#### Ważewski principle

If N is a Ważewski set and  $H_*(N, N^-) \neq 0$  then inv  $N \neq \emptyset$ .



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A compact set N is a Ważewski set if  $N^- := \{x \in N \mid \forall_{\epsilon > 0} \varphi(x, [0, \epsilon]) \not\subset N\}$  is closed.

#### Ważewski principle

If N is a Ważewski set and  $H_*(N, N^-) \neq 0$  then inv  $N \neq \emptyset$ .



#### Alexandrov Theorem (1937)

For a preorder  $\leq$  on a finite set X, there is a topology  $\mathcal{T}_{\leq}$  on X whose open sets are the upper sets with respect to  $\leq$ . For a topology  $\mathcal{T}$  on a finite set X, there is a preorder  $\leq_{\mathcal{T}}$  where  $x \leq_{\mathcal{T}} y$  if and only if  $x \in cl_{\mathcal{T}} y$ . The correspondences  $\mathcal{T} \mapsto \leq_{\mathcal{T}}$  and  $\leq \mapsto \mathcal{T}_{\leq}$  are mutually inverse. Under these correspondences continuous maps are transformed into order-preserving maps and vice versa. Moreover, the topology  $\mathcal{T}$  is  $\mathcal{T}_0$  (Kolmogorov) if and only if the preorder  $\leq_{\mathcal{T}}$  is a partial order.

## Simplicial complex as a finite topological space



# Homology of finite topological spaces

#### McCord Theorem, (McCord, 1966)

There exists a map

$$\mu_{(X,\mathcal{T})}: |\mathcal{K}(X,\mathcal{T})| \to (X,\mathcal{T})$$

such that it is continuous and a weak homotopy equivalence. Moreover, if  $f : (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$  is a continuous map of two finite  $\mathcal{T}_0$  topological spaces, then the following diagrams commute:

$$\begin{array}{ccc} |\mathcal{K}(X,\mathcal{T}_X)| \xrightarrow{|\mathcal{K}(f)|} |\mathcal{K}(Y,\mathcal{T}_Y)| & H(|\mathcal{K}(X,\mathcal{T}_X)|) \xrightarrow{|\mathcal{K}(f)|_*} H(|\mathcal{K}(Y,\mathcal{T}_Y)|) \\ & \downarrow^{\mu_{(X,\mathcal{T}_X)}} & \downarrow^{\mu_{(Y,\mathcal{T}_Y)}} & \downarrow^{\mu_{(X,\mathcal{T}_X)_*}} & \downarrow^{\mu_{(Y,\mathcal{T}_Y)_*}} \\ & (X,\mathcal{T}_X) \xrightarrow{f} (Y,\mathcal{T}_Y) & H(X,\mathcal{T}_X) \xrightarrow{f_*} H(Y,\mathcal{T}_Y) \end{array}$$

Let X be a finite topological space and  $A \subset X$ . Then

 $H(X) \cong H(|\mathcal{K}(X)|) \cong H^{\Delta}(\mathcal{K}(X)).$  $H(X, A) \cong H(|\mathcal{K}(X)|, |\mathcal{K}(A)|) \cong H^{\Delta}(\mathcal{K}(X), \mathcal{K}(A)).$ 

 $A \subset \mathcal{P}$  is an **upper set (open)** iff  $x \in A$  and  $y \ge x$  implies  $y \in A$ .  $A \subset \mathcal{P}$  is a **down set (closed)** iff  $x \in A$  and  $y \le x$  implies  $y \in A$ .  $A \subset \mathcal{P}$  is **convex (locally closed)** iff  $x \le y \le z$  with  $x, z \in A, y \in \mathcal{P}$  implies  $y \in A$ .



 $A \subset \mathcal{P}$  is an **upper set (open)** iff  $x \in A$  and  $y \ge x$  implies  $y \in A$ .  $A \subset \mathcal{P}$  is a **down set (closed)** iff  $x \in A$  and  $y \le x$  implies  $y \in A$ .  $A \subset \mathcal{P}$  is **convex (locally closed)** iff  $x \le y \le z$  with  $x, z \in A, y \in \mathcal{P}$  implies  $y \in A$ .



 $A \subset \mathcal{P}$  is an **upper set (open)** iff  $x \in A$  and  $y \ge x$  implies  $y \in A$ .  $A \subset \mathcal{P}$  is a **down set (closed)** iff  $x \in A$  and  $y \le x$  implies  $y \in A$ .  $A \subset \mathcal{P}$  is **convex (locally closed)** iff  $x \le y \le z$  with  $x, z \in A, y \in \mathcal{P}$  implies  $y \in A$ .



▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

 $A \subset \mathcal{P}$  is an **upper set** (open) iff  $x \in A$  and  $y \ge x$  implies  $y \in A$ .  $A \subset \mathcal{P}$  is a **down set** (closed) iff  $x \in A$  and  $y \le x$  implies  $y \in A$ .  $A \subset \mathcal{P}$  is **convex** (locally closed) iff  $x \le y \le z$  with  $x, z \in A, y \in \mathcal{P}$  implies  $y \in A$ .


## **Combinatorial Multivector Fields for FTop**

Let X be a finite topological space.

A multivector is a locally closed subset of X. Combinatorial multivector field (MVF)  $\mathcal{V}$  on X is a collection of multivectors, such that  $\mathcal{V}$  is a partition of X.



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで









#### Essential solutions and invariant sets

A map  $\varphi : \mathbb{Z} \to X$  is a **full solution for**  $\mathcal{V}$  iff  $\forall_{i \in \mathbb{Z}} \varphi(i+1) \in F_{\mathcal{V}}(\varphi(i))$ . We denote a set of full solutions in X by Sol(X).

A multivector  $V \in \mathcal{V}$  is critical if  $H(\operatorname{cl} V, \operatorname{mo} V) \neq 0$ , otherwise V is regular.

A full solution  $\varphi : \mathbb{Z} \to X$  is **essential** if for every regular  $x \in \operatorname{im} \varphi$  the set  $\{t \in \mathbb{Z} \mid \varphi(t) \notin [x]_{\mathcal{V}}\}$  is either left- and right-unbounded. A set of all essential solutions in a set  $A \subseteq X$  with  $\varphi(0) = x$  is denoted  $\operatorname{eSol}(x, A)$ .



## Isolated invariant sets

**Invariant part** of  $A \subseteq X$  is

$$Inv(A) := \{x \in A \mid eSol(x, A) \neq \emptyset\}$$

We say that A is **invariant** iff Inv(A) = A.

A closed set N isolates an invariant set  $S \subseteq N$  if the following two conditions holds

- a) every path in N with endpoints in S is a path in S,
- b)  $\Pi_{\mathcal{V}}(S) \subseteq N$ .

In this case, we also say that N is an isolating set for S. An invariant set S is **isolated** if there exists a closed set N meeting the above conditions.



Let *S* be isolated invariant set under  $\mathcal{V}$ , and let *P* and *E* denote closed sets where  $E \subseteq P$ . If the following conditions hold, then (P, E) is an **index pair** for *S*:

1)  $F_{\mathcal{V}}(P \setminus E) \subseteq P$ ,

2) 
$$F_{\mathcal{V}}(E) \cap P \subseteq E$$

3) 
$$S = \operatorname{inv}_{\mathcal{V}}(P \setminus E).$$



The **combinatorial homology Conley index** of an isolated invariant set *S* is defined as Con(S) := H(P, E), where (P, E) is an index pair for *S*.

#### Theorem 5.16 (LKMW, 2020)

Let *S* be isolated invariant set under  $\mathcal{V}$ , and let *P* and *E* denote closed sets where  $E \subseteq P$ . If the following conditions hold, then (P, E) is an **index pair** for *S*:



The **combinatorial homology Conley index** of an isolated invariant set *S* is defined as Con(S) := H(P, E), where (P, E) is an index pair for *S*.

#### Theorem 5.16 (LKMW, 2020)

Let *S* be isolated invariant set under  $\mathcal{V}$ , and let *P* and *E* denote closed sets where  $E \subseteq P$ . If the following conditions hold, then (P, E) is an **index pair** for *S*:

1)  $F_{\mathcal{V}}(P \setminus E) \subseteq P$ , 2)  $F_{\mathcal{V}}(E) \cap P \subseteq E$ , 3)  $S = \operatorname{inv}_{\mathcal{V}}(P \setminus E)$ .



The **combinatorial homology Conley index** of an isolated invariant set *S* is defined as Con(S) := H(P, E), where (P, E) is an index pair for *S*.

#### Theorem 5.16 (LKMW, 2020)

Let *S* be isolated invariant set under  $\mathcal{V}$ , and let *P* and *E* denote closed sets where  $E \subseteq P$ . If the following conditions hold, then (P, E) is an **index pair** for *S*:

- 1)  $F_{\mathcal{V}}(P \setminus E) \subseteq P$ ,
- 2)  $F_{\mathcal{V}}(E) \cap P \subseteq E$ ,

3)  $S = \operatorname{inv}_{\mathcal{V}}(P \setminus E).$ 



The **combinatorial homology Conley index** of an isolated invariant set *S* is defined as Con(S) := H(P, E), where (P, E) is an index pair for *S*.

#### Theorem 5.16 (LKMW, 2020)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで















For two families of sets A and B we write  $A \sqsubseteq B$  if for every  $A \in A$  there exists a  $B \in B$  such that  $A \subseteq B$ .

An atomic rearrangements of multivector fields:

- $\mathcal{V}$  is an **atomic refinement** of  $\mathcal{W}$  if  $\mathcal{V} \sqsubseteq \mathcal{W}$  and  $|\mathcal{V} \setminus \mathcal{W}| = 1$
- $\mathcal{V}$  is an **atomic coarsening** of  $\mathcal{W}$  if  $\mathcal{V} \sqsupseteq \mathcal{W}$  and  $|\mathcal{V} \setminus \mathcal{W}| = 2$



MVF(X) - a family of all multivector fields on X with a topology induced by  $\sqsubseteq$ .





# Combinatorial continuation of an isolated invariant set

# Combinatorial continuation of an isolated invariant set

Let  $S_1, S_2, \ldots, S_n$  denote a sequence of isolated invariant sets under the multivector fields  $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$ , where each  $\mathcal{V}_i$  is defined on a fixed simplicial complex K. We say that isolated invariant set  $S_1$  **continues** to isolated invariant set  $S_n$  whenever there exists a sequence of index pairs  $(P_1, E_1), (P_2, E_2), \ldots,$  $(P_{n-1}, E_{n-1})$  where  $(P_i, E_i)$  is an index pair for both  $S_i$  and  $S_{i+1}$ . Such a sequence is a **sequence of connecting index pairs**.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



ຽູ



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで











▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



**Tracking Protocol** 

<AZ is the minimal locally closed set

Attempt to track via continuation:

- 1 If  $\mathcal{V}'$  is an atomic refinement of  $\mathcal{V}$ , then take  $S' := \operatorname{inv}_{\mathcal{V}'}(S)$ .
- 2 If V' is an atomic coarsening of V, and the unique merged multivector V has the property that V ⊆ S, then take S' := inv<sub>V'</sub>(S).
- 3 If V' is an atomic coarsening of V, and the unique merged multivector V has the property that V ∩ S = Ø, then take S' := inv<sub>V'</sub>(S) = S.
- 4 If  $\mathcal{V}'$  is an atomic coarsening of  $\mathcal{V}$  and the unique merged multivector V satisfies the formulae  $V \cap S \neq \emptyset$  and  $V \not\subseteq S$ , then consider  $A = \langle S \cup V \rangle_{\mathcal{V}'}$ . If  $\operatorname{inv}_{\mathcal{V}}(A) = S$ , then take  $S' := \operatorname{inv}_{\mathcal{V}'}(A)$ .
- 5 Else, it is impossible to track via continuation.

#### Theorem 11 (Dey, L., Mrozek, Slechta; 2022)

Let  $\mathcal{V}$  and  $\mathcal{V}'$  denote multivector fields where  $\mathcal{V}'$  is an atomic refinement of  $\mathcal{V}$ . Let A be a  $\mathcal{V}$ -compatible and convex set. The pair (cl(A), mo(A)) is an index pair for both inv<sub> $\mathcal{V}$ </sub>(A) under  $\mathcal{V}$  and inv<sub> $\mathcal{V}'$ </sub>(A) under  $\mathcal{V}'$ .

#### Theorem 12 (Dey, L., Mrozek, Slechta; 2022)

Let  $\mathcal{V}$  and  $\mathcal{V}'$  denote multivector fields where  $\mathcal{V}'$  is an atomic coarsening of  $\mathcal{V}$ . Let A be a convex and  $\mathcal{V}$ -compatible set, and let  $V \in \mathcal{V}'$  be the unique merged multivector. If  $V \subseteq A$  or  $V \cap A = \emptyset$ , then (cl(A), mo(A)) is an index pair for both  $inv_{\mathcal{V}}(A)$  and  $inv_{\mathcal{V}'}(A)$ .

#### Theorem 13 (Dey, L., Mrozek, Slechta; 2022)

Let *S* denote an isolated invariant set under  $\mathcal{V}$  and let  $\mathcal{V}'$  denote an atomic coarsening of  $\mathcal{V}$  where the unique merged multivector  $V \in \mathcal{V}' \setminus \mathcal{V}$  satisfies the formulae  $V \cap S \neq \emptyset$  and  $V \not\subseteq S$ . Furthermore, let  $A := \langle S \cup V \rangle_{\mathcal{V}'}$ . If  $S \neq \text{inv}_{\mathcal{V}}(A)$ , then there does not exist an isolated invariant set *S'* under  $\mathcal{V}'$  for which there is an index pair (P, E) satisfying  $\text{inv}_{\mathcal{V}}(P \setminus E) = S$  and  $\text{inv}_{\mathcal{V}'}(P \setminus E) = S'$ .








(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)





(ロ)、(型)、(E)、(E)、 E) の(()





(ロ)、(型)、(E)、(E)、 E) の(()

















#### Theorem 25; Dey, L., Mrozek, Slechta (2022)

Let S be an isolated invariant set under  $\mathcal{V}$ , and let S' denote an isolated invariant set under  $\mathcal{V}'$  that is obtained by applying the Tracking Protocol. If S' is obtained via Steps 1, 2, or 3, then  $S' \subseteq S$ .

#### Theorem 26; Dey, L., Mrozek, Slechta (2022)

Let S be an isolated invariant set under  $\mathcal{V}$ , and let S' denote an isolated invariant set under  $\mathcal{V}'$  that is obtained by applying the Tracking Protocol. If S' is obtained via Step 4 then  $S \subseteq S'$  or  $S' \subseteq S$ .

## Continuation in terms of persistence



▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

## Continuation in terms of persistence



## Continuation in terms of persistence



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## $(P, E) \supseteq (\operatorname{cl} S, \operatorname{mo} S) \subseteq (P', E')$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### 

## 

## $(P,E) \supseteq (\mathsf{cl}\,S,\mathsf{mo}\,S) \subseteq (P',E')$

## $(P, E) \supseteq (\mathsf{cl}\, S, \mathsf{mo}\, S) \subseteq (P', E')$

$$(P, E) \supseteq (P \cap pf_{\mathcal{V}_i}(cl(S), P), E \cap pf_{\mathcal{V}}(mo(S), P))$$
  
$$\subseteq (pf_{\mathcal{V}}(cl(S), P), pf_{\mathcal{V}}(mo(S), P))$$
  
$$\supseteq (cl(S), mo(S)) \subseteq (pf_{\mathcal{V}'}(cl(S), P'), pf_{\mathcal{V}'}(mo(S), P')) \supseteq (P' \cap pf_{\mathcal{V}'}(cl(S), P'), E' \cap pf_{\mathcal{V}'}(mo(S), P')) \subseteq (P', E')$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let S be isolated invariant set under  $\mathcal{V}$  isolated by N. Let P and E be closed sets such that  $E \subseteq P$ . If the following conditions hold, then (P, E) is an **index pair in** N for S:

- 1)  $\Pi_{\mathcal{V}}(P \setminus E) \subseteq N$ ,
- 2)  $\Pi_{\mathcal{V}}(E) \cap N \subseteq E$ ,
- 3)  $\Pi_{\mathcal{V}}(P) \cap N \subseteq P$ ,
- 4)  $S = inv_{\mathcal{V}}(P \setminus E).$



### Theorem 21; Dey, L., Mrozek, Slechta (2022)

Let (P, E) and (P', E') denote index pairs for S in N under  $\mathcal{V}$ . The pair  $(P \cap P', E \cap E')$  is an index pair for S in N under  $\mathcal{V}$ .

#### Theorem 28; Dey, L., Mrozek, Slechta (2022)

Let (P, E) and (P', E') denote index pairs for S under  $\mathcal{V}$  such that  $P \subseteq P'$  and  $E \subseteq E'$ . Then the inclusion  $i : (P, E) \hookrightarrow (P', E')$  induces an isomorphism in homology.

The **push-forward of a set** A **in** N is defined as  $pf_{\mathcal{V}}(A, N) := \{x \in N \mid \exists \rho \in Sol(x, N), k \in \mathbb{N} \ \rho(0) \in A, \ \rho(k) = x\}.$ 

$$\begin{aligned} (\mathsf{cl}(S),\mathsf{mo}(S)) &\subseteq (\mathsf{pf}_{\mathcal{V}'}(\mathsf{cl}(S),P'),\mathsf{pf}_{\mathcal{V}'}(\mathsf{mo}(S),P')) \\ &\supseteq (P' \cap \mathsf{pf}_{\mathcal{V}'}(\mathsf{cl}(S),P'),E' \cap \mathsf{pf}_{\mathcal{V}'}(\mathsf{mo}(S),P')) \\ &\subseteq (P',E') \end{aligned}$$



◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

(JS, mo S) JS mos

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で



▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●



▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

$$(P, E) \supseteq (P \cap pf_{\mathcal{V}_{i}}(cl(S), P), E \cap pf_{\mathcal{V}}(mo(S), P))$$
  

$$\subseteq (pf_{\mathcal{V}}(cl(S), P), pf_{\mathcal{V}}(mo(S), P))$$
  

$$\supseteq (cl(S), mo(S)) \subseteq (pf_{\mathcal{V}'}(cl(S), P'), pf_{\mathcal{V}'}(mo(S), P')) \supseteq (P' \cap pf_{\mathcal{V}'}(cl(S), P'), E' \cap pf_{\mathcal{V}'}(mo(S), P')) \subseteq (P', E')$$

#### Theorem 22; Dey, L., Mrozek, Slechta (2022)

For every  $k \ge 0$ , the k-dimensional barcode of a connecting sequence of index pairs  $\{(P_i, E_i)\}_{i=1}^n$  has m bars [1, n] if dim  $H_k(P_1, E_1) = m$ .

# **Beyond continuation**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If it is impossible to track via continuation, then attempt to track via persistence:

6 If  $A := \langle S \cup V \rangle_{\mathcal{V}}$ , then take  $S' := \operatorname{inv}_{\mathcal{V}'}(A)$ . If S and S' have a common isolating set, then use the technique from the next slide to find a zigzag filtration connecting them.

7 Otherwise, there is no natural choice of S'.

## Persistence of an isolated invariant set



(ロ)、(型)、(E)、(E)、 E) の(()
## Persistence of an isolated invariant set



(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

## Persistence of an isolated invariant set



(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

## Theorem 23; Dey, L., Mrozek, Slechta (2022)

Let S' denote an isolated invariant set under  $\mathcal{V}'$  that is obtained from applying Step 6 of the Tracking Protocol to the isolated invariant set S under  $\mathcal{V}$ . If S'' is an isolated invariant set under V'where  $S \subseteq S''$ , then  $S' \subseteq S''$ .

 $(\mathsf{cl}(S),\mathsf{mo}(S)) \subseteq (\mathsf{pf}_{\mathcal{V}}(\mathsf{cl}(S),B),\mathsf{pf}_{\mathcal{V}}(\mathsf{mo}(S),B)) \supseteq$  $(\mathsf{pf}_{\mathcal{V}}(\mathsf{cl}(S),B) \cap \mathsf{pf}_{\mathcal{V}'}(\mathsf{cl}(S'),B),\mathsf{pf}_{\mathcal{V}}(\mathsf{mo}(S),B) \cap \mathsf{pf}_{\mathcal{V}'}(\mathsf{mo}(S'),B))$  $\subseteq (\mathsf{pf}_{\mathcal{V}'}(\mathsf{cl}(S'),B),\mathsf{pf}_{\mathcal{V}'}(\mathsf{mo}(S'),B)) \supseteq (\mathsf{cl}(S'),\mathsf{mo}(S'))$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $(P, E) \supseteq (P \cap \mathsf{pf}_{\mathcal{V}}(\mathsf{cl}(S), P), E \cap \mathsf{pf}_{\mathcal{V}}(\mathsf{mo}(S), P)) \subseteq (\mathsf{pf}_{\mathcal{V}}(\mathsf{cl}(S), P), \mathsf{pf}_{\mathcal{V}}(\mathsf{mo}(S), P)) \supseteq (\mathsf{cl}(S), \mathsf{mo}(S))$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



・ロト・日本・モート・モー うべの







・ロト・雪ト・ヨト・ヨー うへぐ





・ロト ・御ト ・ヨト ・ヨト 三臣





## Thank you!

- Conley, C. C. and R. W. Easton (1971). "Isolated invariant sets and isolating blocks". In: Transactions of the American Mathematical Society 158, pp. 35-61.
- Dey, T. K., M. Mrozek, and R. Slechta (2020). "Persistence of the Conley Index in Combinatorial Dynamical Systems". In: 36th SoCG, 37:1-37:17
- 📄 (2022). "Persistence of Conley–Morse Graphs in Combinatorial Dynamical Systems". In: SIAM Journal on Applied Dynamical Systems 21.2, pp. 817-839.
- Lipiński, M., J. Kubica, M. Mrozek, and T. Wanner (2020). Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces. arXiv:1911.12698. arXiv: 1911.12698 [math.DS].

📔 Tamal, D. K., M. Lipiński, M. Mrozek, and R. Slechta (2022).

"Tracking dynamical features via continuation and persistence". In: 38th SoCG

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・