Simplicial Models for Epistemic Logic

GETCO 2022

Jérémy Ledent Monday 30 May, 2022

Introduction

Goal: prove impossibility results in distributed computing.

Goal: prove impossibility results in distributed computing.

Various methods :

- ► Valency arguments (e.g. "FLP impossibility")
- ► Epistemic logic (Halpern and Moses 1990)
- Combinatorial topology (Herlihy and Shavit 1999)

Brief overview of this talk

*A Simplicial Complex Model for Dynamic Epistemic Logic to study Distributed Task Computability.

Goubault, Ledent, Rajsbaum (2021)

Epistemic Logic

Let Ag be a finite set of agents and At a set of atomic propositions. Syntax:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid K_a \varphi \qquad p \in At, \ a \in Ag$$

Example formula: $K_a \neg K_b \varphi$ where $a, b \in Ag$

"a knows that b doesn't know that the formula φ is true."

Let Ag be a finite set of agents and At a set of atomic propositions. Syntax:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid K_a \varphi \qquad p \in At, \ a \in Ag$$

Example formula: $K_a \neg K_b \varphi$ where $a, b \in Ag$

"a knows that b doesn't know that the formula φ is true."

In distributed computing:

 $\begin{array}{rccc} \mbox{Agents} & \longleftrightarrow & \mbox{Processes} \\ \mbox{Atomic propositions} & \longleftrightarrow & \mbox{Facts about the system} \end{array}$

Α

Two divisions of the same army, commanded by general A and general B, are surrounding an enemy fortress.

В

They must attack simultaneously.

Α

B

- They must attack simultaneously.
- ► They communicate by sending messengers.

Α

B

They must attack simultaneously.

A

- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.

- They must attack simultaneously.
- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.

- They must attack simultaneously.
- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.

- They must attack simultaneously.
- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.

- They must attack simultaneously.
- They communicate by sending messengers.
- Messengers might be captured by the enemy, in which case, the message is never received.

Simplicial Models for Epistemic Logic

Definition

A chromatic simplicial complex is given by (V, S, χ) where:

- (V, S) is a simplicial complex,
- $\chi: V \rightarrow Ag$ is a *coloring* map,

such that every simplex $X \in S$ has all vertices of distinct colors.

Example: a pure chromatic simplicial complex of dimension 2.

Assume the number of agents is |Ag| = n + 1.

Definition

- A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:
 - (V, S, χ) is a pure chromatic simplicial complex of dimension n.
 - $\ell: V \to \mathscr{P}(At)$ is a valuation function.

Assume the number of agents is |Ag| = n + 1.

Definition

- A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:
 - (V, S, χ) is a pure chromatic simplicial complex of dimension n.
 - $\ell: V \to \mathscr{P}(At)$ is a valuation function.

Assume the number of agents is |Ag| = n + 1.

Definition

- A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:
 - (V, S, χ) is a pure chromatic simplicial complex of dimension n.
 - $\ell: V \to \mathscr{P}(At)$ is a valuation function.

Assume the number of agents is |Ag| = n + 1.

Definition

- A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:
 - (V, S, χ) is a pure chromatic simplicial complex of dimension n.
 - $\ell: V \to \mathscr{P}(At)$ is a valuation function.

Assume the number of agents is |Ag| = n + 1.

Definition

- A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:
 - (V, S, χ) is a pure chromatic simplicial complex of dimension n.
 - $\ell: V \to \mathscr{P}(At)$ is a valuation function.

Assume the number of agents is |Ag| = n + 1.

Definition

- A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:
 - (V, S, χ) is a pure chromatic simplicial complex of dimension n.
 - $\ell: V \to \mathscr{P}(At)$ is a valuation function.

Assume the number of agents is |Ag| = n + 1.

Definition

- A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:
 - (V, S, χ) is a pure chromatic simplicial complex of dimension n.
 - $\ell: V \to \mathscr{P}(At)$ is a valuation function.

Assume the number of agents is |Ag| = n + 1.

Definition

- A pure simplicial model is given by $\mathscr{C} = (V, S, \chi, \ell)$ where:
 - (V, S, χ) is a pure chromatic simplicial complex of dimension n.
 - $\ell: V \to \mathscr{P}(At)$ is a valuation function.

We define the validity relation $\mathscr{C}, X \models \varphi$, where:

- ► *C* is a simplicial model,
- $X \in Facet(\mathscr{C})$ is a world of \mathscr{C} ,
- φ is an epistemic logic formula.

We define the validity relation $\mathscr{C}, X \models \varphi$, where:

- ▶ *C* is a simplicial model,
- $X \in Facet(\mathscr{C})$ is a world of \mathscr{C} ,
- + φ is an epistemic logic formula.

By induction on φ :

$$\begin{array}{lll} \mathscr{C}, X \vDash p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \vDash \neg \varphi & \text{iff} & \mathscr{C}, X \nvDash \varphi \\ \mathscr{C}, X \vDash \varphi \land \psi & \text{iff} & \mathscr{C}, X \vDash \varphi \text{ and } \mathscr{C}, X \vDash \psi \\ \mathscr{C}, X \vDash K_a \varphi & \text{iff} & \mathscr{C}, Y \vDash \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$
$$\begin{array}{lll} \mathscr{C}, X \models \rho & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \models \neg \varphi & \text{iff} & \mathscr{C}, X \not\models \varphi \\ \mathscr{C}, X \models \varphi \land \psi & \text{iff} & \mathscr{C}, X \models \varphi \text{ and } \mathscr{C}, X \models \psi \\ \mathscr{C}, X \models K_a \varphi & \text{iff} & \mathscr{C}, Y \models \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

Example: $\mathscr{C}, X \models K_a K_b \text{ value}(c) \neq 1$

$$\begin{array}{lll} \mathscr{C}, X \models \rho & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \models \neg \varphi & \text{iff} & \mathscr{C}, X \not\models \varphi \\ \mathscr{C}, X \models \varphi \land \psi & \text{iff} & \mathscr{C}, X \models \varphi \text{ and } \mathscr{C}, X \models \psi \\ \mathscr{C}, X \models K_a \varphi & \text{iff} & \mathscr{C}, Y \models \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

Example: $\mathscr{C}, X \models K_a K_b \text{ value}(c) \neq 1$

$$\begin{array}{lll} \mathscr{C}, X \models \rho & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \models \neg \varphi & \text{iff} & \mathscr{C}, X \not\models \varphi \\ \mathscr{C}, X \models \varphi \land \psi & \text{iff} & \mathscr{C}, X \models \varphi \text{ and } \mathscr{C}, X \models \psi \\ \mathscr{C}, X \models K_a \varphi & \text{iff} & \mathscr{C}, Y \models \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

Example: $\mathscr{C}, X \models K_a K_b \text{ value}(c) \neq 1$

$$\begin{array}{lll} \mathscr{C}, X \models \rho & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \models \neg \varphi & \text{iff} & \mathscr{C}, X \not\models \varphi \\ \mathscr{C}, X \models \varphi \land \psi & \text{iff} & \mathscr{C}, X \models \varphi \text{ and } \mathscr{C}, X \models \psi \\ \mathscr{C}, X \models K_a \varphi & \text{iff} & \mathscr{C}, Y \models \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

Example: $\mathscr{C}, X \models K_a K_b \text{ value}(c) \neq 1$

Suppose the number of agents is |Ag| = n + 1.

Theorem (Goubault, Ledent, Rajsbaum (2018, 2021))

The category of pure simplicial models of dimension n is equivalent to the category of proper and local Kripke models.

Example: with three agents, Ag = { a, b, c },

Suppose the number of agents is |Ag| = n + 1.

Theorem (Goubault, Ledent, Rajsbaum (2018, 2021))

The category of pure simplicial models of dimension *n* is equivalent to the category of proper and local Kripke models.

Example: with three agents, Ag = { a, b, c },

Generalizing Simplicial Models

What about impure simplicial models?

Impure simplicial complexes.

- Common in distributed computing.
- They model systems with detectable crashes.

What about impure simplicial models?

Impure simplicial complexes.

- Common in distributed computing.
- They model systems with detectable crashes.

Contributions:

- Find an equivalent class of Kripke models.
- Axiomatise the logic.

A Simplicial Model for KB4: Epistemic Logic with Agents That May Die.

Goubault, Ledent, Rajsbaum (STACS 22)

Satisfaction relation

Recall the definition of the satisfaction relation, $\mathscr{C}, X \models \varphi$:

$$\begin{array}{lll} \mathscr{C}, X \vDash p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \vDash \neg \varphi & \text{iff} & \mathscr{C}, X \nvDash \varphi \\ \mathscr{C}, X \vDash \varphi \land \psi & \text{iff} & \mathscr{C}, X \vDash \varphi \text{ and } \mathscr{C}, X \vDash \psi \\ \mathscr{C}, X \vDash K_a \varphi & \text{iff} & \mathscr{C}, Y \vDash \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

Satisfaction relation

Recall the definition of the satisfaction relation, $\mathscr{C}, X \models \varphi$:

$$\begin{array}{lll} \mathscr{C}, X \vDash p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \vDash \neg \varphi & \text{iff} & \mathscr{C}, X \nvDash \varphi \\ \mathscr{C}, X \vDash \varphi \land \psi & \text{iff} & \mathscr{C}, X \vDash \varphi \text{ and } \mathscr{C}, X \vDash \psi \\ \mathscr{C}, X \vDash K_a \varphi & \text{iff} & \mathscr{C}, Y \vDash \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

$$\begin{array}{lll} \mathscr{C}, X \vDash p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \vDash \neg \varphi & \text{iff} & \mathscr{C}, X \nvDash \varphi \\ \mathscr{C}, X \vDash \varphi \land \psi & \text{iff} & \mathscr{C}, X \vDash \varphi \text{ and } \mathscr{C}, X \vDash \psi \\ \mathscr{C}, X \vDash K_a \varphi & \text{iff} & \mathscr{C}, Y \vDash \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

p is true in X_1 only.

$$\begin{array}{lll} \mathscr{C}, X \vDash p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \vDash \neg \varphi & \text{iff} & \mathscr{C}, X \nvDash \varphi \\ \mathscr{C}, X \vDash \varphi \land \psi & \text{iff} & \mathscr{C}, X \vDash \varphi \text{ and } \mathscr{C}, X \vDash \psi \\ \mathscr{C}, X \vDash K_a \varphi & \text{iff} & \mathscr{C}, Y \vDash \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

Example: with $Ag = \{a, b, c\}$ and $At = \{p\}$.

p is true in X_1 only.

$$\begin{array}{lll} \mathscr{C}, X \vDash p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \vDash \neg \varphi & \text{iff} & \mathscr{C}, X \nvDash \varphi \\ \mathscr{C}, X \vDash \varphi \land \psi & \text{iff} & \mathscr{C}, X \vDash \varphi \text{ and } \mathscr{C}, X \vDash \psi \\ \mathscr{C}, X \vDash K_a \varphi & \text{iff} & \mathscr{C}, Y \vDash \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

Example: with $Ag = \{a, b, c\}$ and $At = \{p\}$.

p is true in X_1 only.

- $\mathscr{C}, X_1 \models K_a p$ $\mathscr{C}, X_1 \models \neg K_b p$

$$\begin{array}{lll} \mathscr{C}, X \vDash p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \vDash \neg \varphi & \text{iff} & \mathscr{C}, X \nvDash \varphi \\ \mathscr{C}, X \vDash \varphi \land \psi & \text{iff} & \mathscr{C}, X \vDash \varphi \text{ and } \mathscr{C}, X \vDash \psi \\ \mathscr{C}, X \vDash K_a \varphi & \text{iff} & \mathscr{C}, Y \vDash \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

p is true in X_1 only.

- $\mathcal{C}, X_1 \models K_a p$
- $\mathcal{C}, X_1 \models \neg K_b p$
- $\mathscr{C}, X_4 \models (K_b \neg p) \land (K_c \neg p)$

$$\begin{array}{lll} \mathscr{C}, X \vDash p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \vDash \neg \varphi & \text{iff} & \mathscr{C}, X \nvDash \varphi \\ \mathscr{C}, X \vDash \varphi \land \psi & \text{iff} & \mathscr{C}, X \vDash \varphi \text{ and } \mathscr{C}, X \vDash \psi \\ \mathscr{C}, X \vDash K_a \varphi & \text{iff} & \mathscr{C}, Y \vDash \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

p is true in X_1 only.

- $\mathcal{C}, X_1 \models K_a p$
- $\mathcal{C}, X_1 \models \neg K_b p$
- $\mathscr{C}, X_4 \models (K_b \neg p) \land (K_c \neg p)$
- $\mathscr{C}, X_2 \models K_a p$

$$\begin{array}{lll} \mathscr{C}, X \vDash p & \text{iff} & p \in \ell(X) \\ \mathscr{C}, X \vDash \neg \varphi & \text{iff} & \mathscr{C}, X \nvDash \varphi \\ \mathscr{C}, X \vDash \varphi \land \psi & \text{iff} & \mathscr{C}, X \vDash \varphi \text{ and } \mathscr{C}, X \vDash \psi \\ \mathscr{C}, X \vDash K_a \varphi & \text{iff} & \mathscr{C}, Y \vDash \varphi \text{ for all } Y \in \text{Facet}(\mathscr{C}) \\ & \text{such that } a \in \chi(X \cap Y) \end{array}$$

p is true in X_1 only.

- $\mathcal{C}, X_1 \models K_a p$
- $\mathcal{C}, X_1 \models \neg K_b p$
- $\blacktriangleright \ \mathcal{C}, X_4 \models (K_b \neg p) \land (K_c \neg p)$
- $\mathscr{C}, X_2 \models K_a p$
- $\mathcal{C}, X_1 \models K_b K_a p$

Define the following formulas, for an agent $a \in Ag$:

 $dead(a) := K_a false$ $alive(a) := \neg dead(a)$

One can check that:

$$\mathscr{C}, w \models alive(a)$$
 iff $a \in \chi(w)$

Define the following formulas, for an agent $a \in Ag$:

$$dead(a) := K_a false$$
 $alive(a) := \neg dead(a)$

One can check that:

$$\mathscr{C}, w \models alive(a)$$
 iff $a \in \chi(w)$

Example: Some valid formulas in KB4:

- Dead agents know everything:
- Alive agents know they are alive:
- Alive agents satisfy Axiom **T**:

$$\begin{split} \mathbf{KB4} \vdash \mathrm{dead}(a) &\Longrightarrow K_a \varphi. \\ \mathbf{KB4} \vdash \mathrm{alive}(a) &\Longrightarrow K_a \mathrm{alive}(a). \\ \mathbf{KB4} \vdash \mathrm{alive}(a) &\Longrightarrow (K_a \varphi \Rightarrow \varphi). \end{split}$$

Simplicial set models

Definition

A pre-simplicial set is given by a sequence of sets $(S_n)_{n \in \mathbb{N}}$, together with maps $d_i^n : S_n \to S_{n-1}$ for every $n \in \mathbb{N}$ and $0 \le i \le n$, satisfying the simplicial identities.

$$S_0 \xleftarrow{d_0} S_1 \xleftarrow{d_0} S_1 \xleftarrow{d_0} S_2 \xleftarrow{d_0} S_2 \xleftarrow{d_0} S_3$$

. . .

Simplicial set models

Definition

A pre-simplicial set is given by a sequence of sets $(S_n)_{n \in \mathbb{N}}$, together with maps $d_i^n : S_n \to S_{n-1}$ for every $n \in \mathbb{N}$ and $0 \le i \le n$, satisfying the simplicial identities.

V.S.

Idea:

- ► Define simplicial models based on (pre-)simplicial sets.
- What is the associated logic?
- What are some use cases?

Applications to Distributed Computing

Input complex

Idea: find a logical obstruction to the existence of the simplicial map δ .

Idea: find a logical obstruction to the existence of the simplicial map δ .

Lemma (Knowledge Gain)

Let $\delta : \mathscr{C} \longrightarrow \mathscr{C}'$ be a morphism of simplicial models, and let φ be a positive formula. Then:

 $\mathscr{C}', \delta(X) \models \varphi$ implies $\mathscr{C}, X \models \varphi$

Idea: find a logical obstruction to the existence of the simplicial map δ .

Lemma (Knowledge Gain)

Let $\delta: \mathscr{C} \longrightarrow \mathscr{C}'$ be a morphism of simplicial models, and let φ be a positive formula. Then:

 $\mathscr{C}', \delta(X) \models \varphi$ implies $\mathscr{C}, X \models \varphi$

Recipe for impossibility proofs:

- Assume by contradiction that $\delta : \mathscr{P} \longrightarrow \mathscr{O}$ exists.
- Choose a suitable formula φ such that:
- φ is true everywhere in the output model
- φ is false somewhere in the protocol model

Results

Goubault, Ledent, Rajsbaum (2018, 2021)

- ► ✓ **Consensus**: impossbility proof using common knowledge.
- Approximate agreement: impossibility proof using iterated knowledge.
- Set agreement: an impossibility proof is given, but the formula is unsatisfactory.

Results

Goubault, Ledent, Rajsbaum (2018, 2021)

- ► ✓ **Consensus**: impossbility proof using common knowledge.
- Approximate agreement: impossibility proof using iterated knowledge.
- Set agreement: an impossibility proof is given, but the formula is unsatisfactory.

Nishimura, Yagi, Logical Obstruction to Set Agreement Tasks for Superset-Closed Adversaries (2020)

► ✓ Set agreement: a more informative impossibility formula is used, but only for one round.

Results

Goubault, Ledent, Rajsbaum (2018, 2021)

- ► ✓ **Consensus**: impossbility proof using common knowledge.
- Approximate agreement: impossibility proof using iterated knowledge.
- Set agreement: an impossibility proof is given, but the formula is unsatisfactory.

Nishimura, Yagi, Logical Obstruction to Set Agreement Tasks for Superset-Closed Adversaries (2020)

► ✓ Set agreement: a more informative impossibility formula is used, but only for one round.

Goubault, Lazić, Ledent, Rajsbaum, A Dynamic Epistemic Logic analysis of Equality Negation (2019)

► X Equality negation: no formula can prove impossibility.

Research directions

Distributed knowledge. $D_B \varphi$, where $B \subseteq Ag$.

- ► A group of agents put their knowledge in common.
- ► In simplicial models: simplexes sharing a *B*-coloured face.

Distributed knowledge. $D_B \varphi$, where $B \subseteq Ag$.

- ► A group of agents put their knowledge in common.
- ► In simplicial models: simplexes sharing a *B*-coloured face.

Common Distributed Knowledge. $CD_{\beta}\varphi$, where $\beta \subseteq \mathscr{P}(Ag)$

- Infinitary iteration of distributed knowledge.
- Subsumes both common knowledge and distributed knowledge.

Distributed knowledge. $D_B \varphi$, where $B \subseteq Ag$.

- ► A group of agents put their knowledge in common.
- ► In simplicial models: simplexes sharing a *B*-coloured face.

Common Distributed Knowledge. $CD_{\beta}\varphi$, where $\beta \subseteq \mathscr{P}(Ag)$

- Infinitary iteration of distributed knowledge.
- ► Subsumes both common knowledge and distributed knowledge.

Other topological operators?

Distributed computing	Topology	Logic
consensus	connectedness	common knowledge
k-set agreement	k-connectedness	???

Topology vs logic: can we characterize topological properties via logical formulas?

Topology vs logic: can we characterize topological properties via logical formulas?

Examples:

- Is there a φ such that $\mathscr{C} \models \varphi$ iff \mathscr{C} is a (pseudo-)manifold?
- Is there a sound and complete axiomatization for the class of collapsible simplicial models?
- Which logical formulas are preserved under subdivision?

3 - Link with directed topology

Theorem

There is a bijection between facets of the n-dimensional chromatic subdivision and cube chains in the (n+1)-dimensional cube.

3 - Link with directed topology

Theorem

There is an order isomorphism between the face poset of the n-dimensional chromatic subdivision and the poset of partial cube chains in the (n+1)-dimensional cube.

Thanks!