Computing the matching distance of multi-parameter persistence from Morse critical values

Claudia Landi

Università di Modena e Reggio Emilia

GETCO 2022

May 31, 2022

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for ..

- ... Detecting gradient anti-alignment
- ... Fibering persistence modules
- ... Computing the matching distance

Conclusions

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for ..

- ... Detecting gradient anti-alignment
- ... Fibering persistence modules
- ... Computing the matching distance

Conclusions

The pipeline of 1-parameter persistence

The pipeline of 1-parameter persistence

 $\begin{array}{rcl} {\sf Decomposition} & \Leftrightarrow & {\sf barcodes} \\ {\sf Interleaving \ distance} & = & {\sf bottleneck \ distance} \end{array}$

The pipeline of multi-parameter persistence

$$f: \Sigma \to \mathbb{R}^n$$

$$\downarrow$$

$$\Sigma^u = \{ \sigma \in \Sigma : f(\sigma) \preceq u \}$$

$$\downarrow$$

$$M = \{ H_k(\Sigma^u), i^{u,v} \}$$

$$\downarrow$$

Combinatorics invariants

decomposition: $M \cong \bigoplus_i M_i$ fibered barcodes: $\{B(M_L)\}_L$

[L18]

More in detail

- \blacktriangleright Σ simplicial complex
- $\blacktriangleright f = (f_1, \dots, f_n) : \Sigma \to \mathbb{R}^n$

▶ Lower level subcomplexes: for $u \in \mathbb{R}^n$,

$$\Sigma^{u} := \{ \boldsymbol{\sigma} \in \Sigma : f(\boldsymbol{\sigma}) \preceq u \}$$

• Nested:
$$u \leq v$$
 implies $\Sigma^u \subseteq \Sigma^v$

 E.g., f defined on vertices and extended to any σ by

$$f_i(\boldsymbol{\sigma}) = \max_{v \in \boldsymbol{\sigma}} f_i(v)$$

► $M = \{H(\Sigma^u), i^{u,v}\}_{u \leq v}$ persistence module of (Σ, f)

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for ..

- ... Detecting gradient anti-alignment
- ... Fibering persistence modules
- ... Computing the matching distance

Conclusions

Discrete gradients

A discrete gradient V is a partition of Σ into

- singletons $\{\sigma\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ

such that

▶ V is acyclic:
$$earrow ext{ closed path } \{ \sigma_i, \tau_i \}_{1 \leq i \leq r} ext{ with } \sigma_{i+1}$$
facet of au_i

Discrete Morse Theory

Any pair (σ, τ) ∈ V defines a simplical collapse which preserves homotopy type.

- Homotopy equivalent \implies isomorphic homology groups.
- Therefore, critical values can help identify the steps of the filtration where the associated subcomplex may undergo a change in homology.

$$\forall (\boldsymbol{\sigma}, \boldsymbol{\tau}) \in V$$
, $f(\boldsymbol{\sigma}) = f(\boldsymbol{\tau})$.

$$\forall (\boldsymbol{\sigma}, \boldsymbol{\tau}) \in V$$
, $f(\boldsymbol{\sigma}) = f(\boldsymbol{\tau})$.

$$\forall (\boldsymbol{\sigma}, \boldsymbol{\tau}) \in V$$
, $f(\boldsymbol{\sigma}) = f(\boldsymbol{\tau})$.

$$\forall (\boldsymbol{\sigma}, \boldsymbol{\tau}) \in V, \ f(\boldsymbol{\sigma}) = f(\boldsymbol{\tau}).$$

$$\forall (\boldsymbol{\sigma}, \boldsymbol{\tau}) \in V$$
, $f(\boldsymbol{\sigma}) = f(\boldsymbol{\tau})$.

A discrete gradient V is *compatible* with $f: \Sigma \to \mathbb{R}^n$ if

$$\forall (\boldsymbol{\sigma}, \boldsymbol{\tau}) \in V, \ f(\boldsymbol{\sigma}) = f(\boldsymbol{\tau}).$$

[AKL'17]: The persistence module of (Σ, f) and that of its Morse complex formed by critical cells only are isomorphic

A discrete gradient V is *compatible* with $f: \Sigma \to \mathbb{R}^n$ if

 $\forall (\boldsymbol{\sigma}, \boldsymbol{\tau}) \in V, \ f(\boldsymbol{\sigma}) = f(\boldsymbol{\tau}).$

[AKL'17]: The persistence module of (Σ, f) and that of its Morse complex formed by critical cells only are isomorphic

Convenient to speed up computations, e.g. of the fibered barcode
Shark Dataset: whole process

[SIDL'2020] 11 / 26

Construction of a compatible discrete gradient

[SIDL'20]: A discrete gradient compatible with a generic f can be built in linear time on the number of vertices.

[LS'21]: For 2D simplicial complexes and 3D cubical complexes, it is also persistence-perfect.

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for ..

- ... Detecting gradient anti-alignment
- ... Fibering persistence modules
- ... Computing the matching distance

Conclusions

Critical cells for ... detecting gradient anti-alignment

Critical cells localize the regions where the gradient vector fields of f_1 and f_2 disagree:

[[]AKLM'19]

Hurricane Isabel dataset: temperature and pressure on cubical grid

Clusters with \geq 10, 100, 400, 2000 critical cells (color encodes size)

[ISLD'16]

Critical cells ... for fibering persistence modules

- Each increasing line L in \mathbb{R}^n induces a 1-parameter filtration with associated persistence module M_L .
- The fibered barcode of M maps each line L to the barcode of M_L.

Note: $O(m^2)$ lines to consider with *m* number of simplices **Note:** Barcode computations repeated across different lines, each taking $O(m^3)$ time

- A critical value is the value of the parameter at which a critical simplex enters into the filtration.
- \overline{C} is the closure of the set of critical values C under least upper bound.

We can use critical values to partition the set of all lines of \mathbb{R}^n into equivalence classes:

• We write $L \sim_{\overline{C}} L'$, if L and L' have the same reciprocal position with respect to c for all $c \in \overline{C}$.

▶ Here, $L \sim_{\overline{C}} L'$, but $L'' \nsim_{\overline{C}} L'$ and $L'' \nsim_{\overline{C}} L$

Barcodes of restrictions along equivalent lines $L\sim_{\overline{C}}L'$ are in bijection:

So, it is sufficient to compute $B(M_L)$ on representative lines

[BBHLM'21]

Critical cells for ... computing the matching distance

Let M,N be 2-parameter persistence modules, L a line with positive slope. Given the barcodes $B(M_L)$ and $B(N_L)$,

▶ the cost $c(\sigma)$ of a partial matching $\sigma : B(M_L) \to B(N_L)$ is the maximum amount one has to enlarge or shrink the ends of each interval [b,d] in *B* in order to obtain the interval $\sigma([b,d])$, or $[\frac{d-b}{2}, \frac{d-b}{2}]$ if [b,d) is unmatched

$$B(M_L)$$

 $B(N_L)$ ———

- Their bottleneck distance d_B is the minimum cost over all partial matchings σ.
- ▶ The matching distance between *M* and *N* is defined as

$$\sup_L w_L d_B(B(M_L), B(N_L))$$

where the weight w_L is given by the slope of L.

Critical values determine the matching distance

Theorem

The critical values of M and N determine a finite set $\Omega \subset \mathbb{R}^2$ such that the matching distance between M and N is realized by a line (not necessarily unique) through two points in $\overline{C \cup \Omega}$, or by a line through one point in $\overline{C \cup \Omega}$ having diagonal direction.

Critical values determine the matching distance

Theorem

The critical values of M and N determine a finite set $\Omega \subset \mathbb{R}^2$ such that the matching distance between M and N is realized by a line (not necessarily unique) through two points in $\overline{C \cup \Omega}$, or by a line through one point in $\overline{C \cup \Omega}$ having diagonal direction.

Computation of the switch points ω

3 points case: given three points $a, c \in C_M$ and $b \in C_N$, add ω such that for any line L through ω ,

$$\|push_L(b) - push_L(a)\| = \|push_L(b) - push_L(c)\|$$

► If *a* and *c* both push rightwards to *L* while *b* pushes upwards, then $\omega = (x_b, (y_c + y_a)/2)$

► *a* and *b* both push rightwards to *L* while *c* pushes upwards, then $\omega = (x_c, 2y_b - y_a)$

In the worst case, taking m to be the number of critical cells of the persistence modules M and N,

- the number of switch points is $\binom{m}{4} \sim m^4$
- the number of lines to consider is $O(m^8)$
- the cost of computing the bottleneck distance along one line is O(m^{1.187}) [Katz&Sharir22]
- ▶ the cost of computing $B(M_L)$ and $B(N_L)$ for a fixed line *L* is $O(m^3)$ which dominates that of the bottleneck distance
- the total runtime cost is $O(m^{11})$
- ► the space cost is O(m⁴) for storing the set of critical and switch values

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for ..

- ... Detecting gradient anti-alignment
- ... Fibering persistence modules
- ... Computing the matching distance

Conclusions

Take-home message:

- Critical cells capture diverse and fundamental aspects of multi-parameter persistence
- In particular, critical points determine the matching distance for bi-persistence

Open questions:

- reduction of the number of switch points
- computation of matching distance for n-persistence modules

References

- Iuricich, Scaramuccia, L., De Floriani: A discrete Morse-based approach to multivariate data analysis, Siggraph Asia 2016

- Allili, Kaczynski, L.: Reducing complexes in multidimensional persistent homology theory, J. Symb. Comput. (2017)

- L.: The Rank Invariant Stability via Interleavings (2018)

- Allili, Kaczynski, L., Masoni: Acyclic Partial Matchings for Multidimensional Persistence: Algorithm and Combinatorial Interpretation, JMIV (2019)

- Scaramuccia, Iuricich, De Floriani, L.: Computing multiparameter persistent homology through a discrete Morse-based approach, CGTA (2020)

- L. & Scaramuccia, Relative-perfectness of discrete gradient vector fields and multi-parameter persistent homology, J. Comb. Opt. (2021)

- Bapat, Brooks, Hacker, L., Mahler: Morse-based Fibering of the Persistence Rank Invariant, AWM Springer, to appear (arXiv:2011.14967)

- Bapat, Brooks, Hacker, L., Mahler: Computing the matching distance of bi-persistence using critical values, in preparation

Thank you for your attention!