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The pipeline of 1-parameter persistence

Geometry functions f : Σ→ R
↓ ↓ ↓

Topology sublevel sets Σu = {σ ∈ Σ : f (σ)≤ u}
↓ ↓ ↓

Algebra vector spaces M = {Hk(Σ
u), iu,v}

↓ ↓ ↓

Combinatorics invariants decomposition: M ∼=
⊕

i I[bi,di)

barcodes: B(M) = {[bi,di)}
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The pipeline of multi-parameter persistence

Geometry functions f : Σ→ Rn

↓ ↓ ↓
Topology sublevel sets Σu = {σ ∈ Σ : f (σ)� u}
↓ ↓ ↓

Algebra vector spaces M = {Hk(Σ
u), iu,v}

↓ ↓ ↓

Combinatorics invariants decomposition: M ∼=
⊕

i Mi

fibered barcodes: {B(ML)}L

Decomposition 6⇔ fibered barcodes
Interleaving distance ≥ matching distance

[L18]
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More in detail

I Σ simplicial complex

I f = ( f1, . . . , fn) : Σ→ Rn

I Lower level subcomplexes: for u ∈ Rn,

Σ
u := {σ ∈ Σ : f (σ)� u}

I Nested: u� v implies Σu ⊆ Σv

I E.g., f defined on vertices and extended
to any σ by

fi(σ) = max
v∈σ

fi(v)
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I M = {H(Σu), iu,v}u�v persistence module of (Σ, f )
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Discrete gradients

A discrete gradient V is a partition of Σ into

I singletons {σ} (critical cells), and

I pairs {σ ,τ}, where σ is a facet of τ

such that

I V is acyclic: 6 ∃ closed path {σi,τi}1≤i≤r with σi+1
facet of τi

Discrete gradient
vector field

Not a discrete gradient
vector field
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Discrete Morse Theory

I Any pair (σ ,τ) ∈V defines a simplical collapse which
preserves homotopy type.

∼ ∼

I Homotopy equivalent =⇒ isomorphic homology groups.

I Therefore, critical values can help identify the steps of the
filtration where the associated subcomplex may undergo a
change in homology.
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Compatible discrete gradients

A discrete gradient V is compatible with f : Σ→ Rn if

∀(σ ,τ) ∈V , f (σ) = f (τ).
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Compatible discrete gradients

A discrete gradient V is compatible with f : Σ→ Rn if

∀(σ ,τ) ∈V , f (σ) = f (τ).

[AKL’17]: The persistence module of (Σ, f ) and that of its Morse
complex formed by critical cells only are isomorphic
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Compatible discrete gradients

A discrete gradient V is compatible with f : Σ→ Rn if

∀(σ ,τ) ∈V , f (σ) = f (τ).

[AKL’17]: The persistence module of (Σ, f ) and that of its Morse
complex formed by critical cells only are isomorphic
I Convenient to speed up computations, e.g. of the fibered

barcode

[SIDL’2020]
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Construction of a compatible discrete gradient

[SIDL’20]: A discrete gradient compatible with a generic f can be
built in linear time on the number of vertices.

[LS’21]: For 2D simplicial complexes and 3D cubical complexes, it
is also persistence-perfect.
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Critical cells for ... detecting gradient anti-alignment

Critical cells localize the regions where the gradient vector fields of
f1 and f2 disagree:
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[AKLM’19]
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Hurricane Isabel dataset: temperature and pressure on cubical grid

Clusters with ≥ 10, 100, 400, 2000 critical cells (color encodes
size)

[ISLD’16]
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Critical cells ... for fibering persistence modules

I Each increasing line L in Rn induces a 1-parameter filtration
with associated persistence module ML.

I The fibered barcode of M maps each line L to the barcode of
ML.

Note: O(m2) lines to consider with m number of simplices

Note: Barcode computations repeated across different lines, each
taking O(m3) time
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I A critical value is the value of the parameter at which a
critical simplex enters into the filtration.

I C is the closure of the set of critical values C under least
upper bound.
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We can use critical values to partition the set of all lines of Rn into
equivalence classes:

I We write L∼C L′, if L and L′ have the same reciprocal
position with respect to c for all c ∈C.

c1

c2

c3

c4

L
L′

L′′

I Here, L∼C L′, but L′′ �C L′ and L′′ �C L
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Barcodes of restrictions along equivalent lines L∼C L′ are in
bijection:

γ : B(ML)→ B(ML′)

L

L′

c1

c2

c3

d1

d2

d3

C
PushL(C)

PushL′(C)

So, it is sufficient to compute B(ML) on representative lines

[BBHLM’21]
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Critical cells for ... computing the matching distance

Let M,N be 2-parameter persistence modules, L a line with
positive slope. Given the barcodes B(ML) and B(NL),
I the cost c(σ) of a partial matching σ : B(ML)→ B(NL) is the

maximum amount one has to enlarge or shrink the ends of
each interval [b,d] in B in order to obtain the interval
σ([b,d]), or [d−b

2 , d−b
2 ] if [b,d) is unmatched

B(ML)

B(NL)

I Their bottleneck distance dB is the minimum cost over all
partial matchings σ .

I The matching distance between M and N is defined as

sup
L

wLdB(B(ML),B(NL))

where the weight wL is given by the slope of L.
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Critical values determine the matching distance

Theorem
The critical values of M and N determine a finite set Ω⊂ R2 such
that the matching distance between M and N is realized by a line
(not necessarily unique) through two points in C∪Ω, or by a line
through one point in C∪Ω having diagonal direction.

L

L′

[BBHLM’??]
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Critical values determine the matching distance

Theorem
The critical values of M and N determine a finite set Ω⊂ R2 such
that the matching distance between M and N is realized by a line
(not necessarily unique) through two points in C∪Ω, or by a line
through one point in C∪Ω having diagonal direction.

ω

L

L′

[BBHLM’??]
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Computation of the switch points ω

3 points case: given three points a,c ∈CM and b ∈CN , add ω such
that for any line L through ω,

‖pushL(b)− pushL(a)‖= ‖pushL(b)− pushL(c)‖

I If a and c both push rightwards to L while b pushes upwards,
then ω = (xb,(yc + ya)/2)

a b

c

ωe

I a and b both push rightwards to L while c pushes upwards,
then ω = (xc,2yb− ya)

I . . .
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Complexity

In the worst case, taking m to be the number of critical cells of the
persistence modules M and N,

I the number of switch points is
(m

4

)
∼ m4

I the number of lines to consider is O(m8)

I the cost of computing the bottleneck distance along one line
is O(m1.187) [Katz&Sharir22]

I the cost of computing B(ML) and B(NL) for a fixed line L is
O(m3) which dominates that of the bottleneck distance

I the total runtime cost is O(m11)

I the space cost is O(m4) for storing the set of critical and
switch values
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Conclusions

Take-home message:

I Critical cells capture diverse and fundamental aspects of
multi-parameter persistence

I In particular, critical points determine the matching distance
for bi-persistence

Open questions:

I reduction of the number of switch points

I computation of matching distance for n-persistence modules
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