COLIMITS OF LOCAL ORDERS

Pierre-Yves Coursolle Emmanuel Haucourt

GETCO 2022 30 May

What is a local order ?

Partially ordered spaces

Topology and Order, L. Nachbin, 1965

Partially ordered spaces

Topology and Order, L. Nachbin, 1965

A partially ordered space (or pospace) is (X, \sqsubseteq) such that:

- X : topological space
- \sqsubseteq : partial order on X
- $\{(a, b) \in X \times X \mid a \sqsubseteq b\}$ closed in $X \times X$

A pospace morphism is an order-preserving continuous map.

Pospaces and their morphisms form the category PoSp.

The underlying space of a pospace is Hausdorff.

A collection $\ensuremath{\mathcal{U}}$ of pospaces such that:

A collection \mathcal{U} of pospaces such that: for all points $p \in |\mathcal{U}|$,

. *p*

A collection \mathcal{U} of pospaces such that: for all points $p \in |\mathcal{U}|$, for all $U_p \in \mathcal{U}$,

A collection \mathcal{U} of pospaces such that:

for all points $p \in |\mathcal{U}|$, for all $U_p \in \mathcal{U}$, for all $V_p \in \mathcal{U}$,

A collection \mathcal{U} of pospaces such that:

for all points $p \in |\mathcal{U}|$, for all $U_p \in \mathcal{U}$, for all $V_p \in \mathcal{U}$,

there exists W_p open in both U_p and V_p on which \leq_{U_p} and \leq_{V_p} match

Local order morphism from \mathcal{U} to \mathcal{V} A map $f : |\mathcal{U}| \to |\mathcal{V}|$ such that:

Local order morphism from \mathcal{U} to \mathcal{V} A map $f : |\mathcal{U}| \to |\mathcal{V}|$ such that: for all points $p \in |\mathcal{U}|$,

. ^p

Local order morphism from \mathcal{U} to \mathcal{V} A map $f : |\mathcal{U}| \to |\mathcal{V}|$ such that: for all points $p \in |\mathcal{U}|$, all $V_{f(p)} \in \mathcal{V}$,

A map $f : |\mathcal{U}| \to |\mathcal{V}|$ such that: for all points $p \in |\mathcal{U}|$, all $V_{f(p)} \in \mathcal{V}$, and all $B_{f(p)}$ open subsets of V,

A map $f : |\mathcal{U}| \to |\mathcal{V}|$ such that: for all points $p \in |\mathcal{U}|$, all $V_{f(p)} \in \mathcal{V}$, and all $B_{f(p)}$ open subsets of V, there exist $U_p \in \mathcal{U}$,

A map $f : |\mathcal{U}| \to |\mathcal{V}|$ such that: for all points $p \in |\mathcal{U}|$, all $V_{f(p)} \in \mathcal{V}$, and all $B_{f(p)}$ open subsets of V, there exist $U_p \in \mathcal{U}$, and A_p open subset of U_p such that . . .

A map $f : |\mathcal{U}| \to |\mathcal{V}|$ such that:

for all points $p \in |\mathcal{U}|$, all $V_{f(p)} \in \mathcal{V}$, and all $B_{f(p)}$ open subsets of V, there exist $U_p \in \mathcal{U}$, and A_p open subset of U_p such that $f(A_p) \subseteq B_{f(p)}$ and the corresponding restriction is order preserving

Where do local orders come from ?

Mathematical Cosmology and Extragalactic Astronomy, I. E. Segal, 1976, p.23.

Ordered Manifolds, Invariant Conal Fields, and Semigroups, J. D. Lawson, Forum Math. 1989, p.280-1.

Algebraic topology and concurrency, L. Fajstrup, É. Goubault, and M. Raussen, TCS 2006, p.245. (also MFCS 1998) What local orders have to do with concurrency ?

The box category \Box

 $\{\text{Objects of }\Box\} = \mathbb{N} \qquad \Box(a,b) = \left\{w \in \{0,1,x\}^b \mid \#_x w = a\right\}$

 $\#_x w$: number of occurrences of x in $w \in \{0, 1, x\}^*$

Given $\alpha \in \Box(a, b)$ and $\beta \in \Box(b, c)$, the composite $\beta \circ \alpha$ is obtained by replacing the *i*th occurrence of *x* in β by the *i*th occurrence of α (for $i \in \{1, ..., b\}$).

Precubical sets

A precubical set K is a functor form \Box^{op} to Set

The precubical set morphisms are the natural transformations.

Precubical sets and their morphisms form the category PCS

If $K_n = \emptyset$ for $n \ge 2$ then K is a graph.

A bouquet is a graph with a single vertex.

An automaton is a graph morphism whose target is a bouquet.

Higher Dimensional Automata (HDA)

R. van Glabbeek and V. Pratt (early 90's)

A higher dimensional bouquet (HDB) is a precubical set *B* whose *n*-dimensional elements are words of length *n*.

For any $w \in \Box(n, m)$, $B_w(a_1 \cdots a_m) = (a_{i_1} \cdots a_{i_n})$ with $\{i_1 < \cdots < i_n\} = \{i \in \{1, \ldots, m\} \mid \text{the } i^{th} \text{ letter of } w \text{ is } x\}$

e.g.: $B_{0xx1x}(abcde) = (bce)$

HDA : precubical set morphism whose target is a bouquet

Precubical realization

From any precubical set K we deduce the diagram D_K

$$\{\mathcal{K}_w(x)\} \times [0,1]^n \rightarrow \{x\} \times [0,1]^m$$

 $(\mathcal{K}_w(x),t) \mapsto (x,w(t))$

with $n, m \in \mathbb{N}, x \in K_m$, and $w \in \Box(n, m)$.

The realization of *K* is the colimit of D_K in the category in which [0, 1] is interpreted.

Which category to choose ?

d-spaces

Directed homotopy theory, I, M. Grandis, 2003

X: topological space

dX: collection of paths on X containing constant paths and stable under concatenation, reparametrization, and *subpaths*.

A morphism from (X, dX) to (Y, dY) is a continuous map $f : X \to Y$ such that $f \circ dX \subseteq dY$.

d-spaces and morphisms form the category dSpc

allow infinitely many turns in finite time

allow loop deletion

allow loop deletion

allow loop deletion

Local orders and d-spaces

Introducing vortex

U: open subset of X

Local orders and d-spaces

Introducing vortex

```
U: open subset of X
```

 $p \preccurlyeq_U q$: there exists $\delta \in dX$ from p to q with $img(\delta) \subseteq U$

Local orders and d-spaces

Introducing vortex

U: open subset of X

 $p \preccurlyeq_U q$: there exists $\delta \in dX$ from p to q with $img(\delta) \subseteq U$

Is there an open covering \mathcal{U} of X such that $\{(U, \preccurlyeq_U) \mid U \in \mathcal{U}\}$ is a local order ?

Lawson correspondence

E : real vector space

 $W \subseteq E$ is a wedge when $\lambda W + W \subseteq W$ for all $\lambda \in \mathbb{R}_+$

A wedge *C* is a cone when $C \cap (-C) = \{0\}$

Cone fields

 $\mathcal{M}:\text{manifold}$

A cone field *C* is a map $p \in \mathcal{M} \mapsto (C_p : \text{cone of } T_p\mathcal{M})$

[Wedge fields are defined the same way]

 (\mathcal{M}, C) is a conal manifold

A curve on \mathcal{M} is conal when $\dot{\gamma}(t) \in C(\gamma(t))$ for all $t \in \text{dom}(\gamma)$

Cone fields \mapsto d-spaces and local orders

 (\mathcal{M}, dC) is a d-space with $dC = \{$ conal curves on $(\mathcal{M}, C)\}$

If C is upper semicontinuous then there is an open covering \mathcal{U} of \mathcal{M} such that:

- $\{ (U, \preccurlyeq_{U}) \mid U \in \mathcal{U} \}$ is a local order, and
- each (U, ≼_U) is locally convex (i.e. the order convex open subsets of U form a basis of topology)

Cone fields \mapsto d-spaces and local orders

 (\mathcal{M}, dC) is a d-space with $dC = \{$ conal curves on $(\mathcal{M}, C)\}$

If C is upper semicontinuous then there is an open covering \mathcal{U} of \mathcal{M} such that:

- $\ \{(U, \preccurlyeq_{\mathcal{U}}) \mid U \in \mathcal{U}\}$ is a local order, and
- each (U, \preccurlyeq_U) is locally convex (i.e. the order convex open subsets of *U* form a basis of topology)

E.g. The local order on the unit circle comes from the vector field $z \mapsto iz$

Local orders \mapsto cone fields

 $\mathcal U$: local order on $\mathcal M$ whose elements are locally convex

$\mathcal U\,$: local order on $\mathcal M$ whose elements are locally convex

For all $p \in \mathcal{M}$, the least wedge of $T_p\mathcal{M}$ containing $\dot{\gamma}(0)$ for all curves γ with $\gamma(0) = p$ is a cone C(p), and ...

$\mathcal U\,$: local order on $\mathcal M$ whose elements are locally convex

For all $p \in \mathcal{M}$, the least wedge of $T_p\mathcal{M}$ containing $\dot{\gamma}(0)$ for all curves γ with $\gamma(0) = p$ is a cone C(p), and

the mapping $p \mapsto C_p$ is upper semicontinuous.

upper semicontinuous cone fields on $\ensuremath{\mathcal{M}}$

\updownarrow

locally convex local orders on $\ensuremath{\mathcal{M}}$

How local order colimits behave ?

Pinching a loop

Setting the problem

- S: the directed unit circle
- \mathcal{U}_{-} : local order with a distinguished point \star
- i_\star : $z \in S$ \mapsto $(z,\star) \in S imes \mathcal{U}$
- $oldsymbol{c}_{\star}$: $oldsymbol{z}\in oldsymbol{S}$ \mapsto $(1,\star)\in oldsymbol{S} imes \mathcal{U}$

The *coequalizer* of i_{\star} and c_{\star} exists iff the family of clopens containing \star has a *least* element *O*

[NB: connected component of $\star \subseteq \bigcap \{ \text{clopens containing } \star \}, \text{ with equality if the topology of } U \text{ is$ *locally connected* $.]}$

Pinching a loop

Description of the colimit

For $A \in \mathcal{U}$ and α proper arc of S define

 $U_{\alpha A} = (O \cap A) \sqcup \alpha \times (O^{c} \cap A)$ $p(u) = \begin{cases} u & \text{if } u \in O \cap A \\ x & \text{if } u = (z, x) \in \alpha \times (O^c \cap A) \end{cases}$ $u \sqsubseteq u'$ when $p(u) \leq_A p(u')$ and $\begin{cases} \{u, u'\} \cap O \neq \emptyset \\ \text{or} \\ u = (z, x), u' = (z', x'), \text{ and } z \leq_{\alpha} z' \end{cases}$

Pinching a loop

Description of the colimit

The transitive closure \sqsubseteq^* is antisymetric, and we have $u \sqsubseteq^* u'$ iff there exists $u'' \in O \cap A$ such that $u \sqsubseteq u'' \sqsubseteq u'$.

The collection $\{U_{\alpha,A} \mid \alpha : \text{proper arc}; A \in U\}$ is a local order we denote by U_O

The quotient map q_O : $S \times U \rightarrow U_O$ is the coequalizer of i_* and c_* .

If \mathcal{U} is \mathbb{R} or S (with the obvious local order), then the coequalizer is \mathcal{U} .

If \mathcal{U} is \mathbb{Q} (sub local order of \mathbb{R}) or \mathbb{R}_{\star} (with the least topology containing all the usual open subsets and all the single elements set but $\{\star\}$) the coequalizer does not exist.

The zebra cylinder (no more topological trick)

The underlying topology is the standard cylinder $S \times [0, 1]$

Locally ordered realization of a *non-geometric* precubical set

1

0

0

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

$$\mathcal{K}_n = \begin{cases} \{n\} & \text{if } n \leq 2 \\ \emptyset & \text{if } n > 2 \end{cases}$$

 $p \in W_u \cap W_\star$

 $p \in W_u \cap W_{u'}$