Computation of Lyapunov functions and contraction metrics for dynamical systems

University of Sussex, UK - Department of Mathematics

3rd June 2022

GETCO Paris

1 / 55

Overview

Dynamical Systems: Basin of attraction and Lyapunov functions

- 2 Two construction methods for Lyapunov functions
 - Continuous and piece-wise affine functions (CPA)
 - Meshfree collocation with Radial Basis Functions (RBF)
- 3 Complete Lyapunov functions
 - Meshfree collocation
 - Quadratic programming
 - New optimisation problem

4 Contraction metrics

Co-authors:

- Sigurdur Hafstein, Carlos Argaez, Iman Mehrabinezhad (Iceland)
- Holger Wendland (Bayreuth, Germany)
- Stefan Suhr (Bochum, Germany)
- Conor Osborne (Sussex, UK)

1. Basin of attraction of an equilibrium

System of autonomous ordinary differential equations

(1)
$$\begin{cases} \frac{d}{dt}\mathbf{x}(t) = \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) \\ \mathbf{x}(0) = \mathbf{\xi} \end{cases}$$

3/6/2022

 $\mathbf{x}(t) \in \mathbb{R}^n$, $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^n$ Solution of (1) is called flow and denoted $S_t \boldsymbol{\xi} := \mathbf{x}(t)$

Assumptions

- \mathbf{x}_0 is equilibrium $(\mathbf{f}(\mathbf{x}_0) = \mathbf{0})$
- \mathbf{x}_0 is asymptotically stable (eigenvalues of $D\mathbf{f}(\mathbf{x}_0)$)

Definition (Basin of attraction) The basin of attraction of x_0 is

$$A(\mathbf{x}_0) := \{ \boldsymbol{\xi} \in \mathbb{R}^n \mid \|S_t \boldsymbol{\xi} - \mathbf{x}_0\| \stackrel{t \to \infty}{\longrightarrow} 0 \}.$$

 \mathbf{x}_0 is called globally stable, if $A(\mathbf{x}_0) = \mathbb{R}^n$

In general difficult to determine.

Goal: Determine basin of attraction $A(\mathbf{x}_0)$ using a Lyapunov function

Idea

- Lyapunov function is like energy in dissipative system
- It implies stability of equilibrium and gives lower bound on basin of attraction
- Has minimum at equilibrium
- Is strictly decreasing along solutions

Definition

Let \mathbf{x}_0 be an equilibrium. Let

• $v \in C^1(\mathbb{R}^n, \mathbb{R})$

• $U \subset \mathbb{R}^n$ neighborhood of the equilibrium \mathbf{x}_0

- v has strict minimum at equilibrium: $v(\mathbf{x}) \ge 0$ for all $\mathbf{x} \in U$ and $v(\mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{x}_0$
- v is strictly decreasing along trajectories: $\dot{v}(\mathbf{x}) \leq 0$ for all $\mathbf{x} \in U$ and $\dot{v}(\mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{x}_0$

Then v is called a strict Lyapunov function and \mathbf{x}_0 is asymptotically stable.

\dot{v} derivative along solutions or orbital derivative

5 / 55

Definition (Orbital derivative)

Let $v \in C^1(\mathbb{R}^n, \mathbb{R})$. The derivative of v along solutions $S_t \mathbf{x}$ of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, the orbital derivative, is defined as

$$\dot{\boldsymbol{v}}(\mathbf{x}) = \frac{d}{dt} \boldsymbol{v}(S_t \mathbf{x}) \big|_{t=0} = \nabla \boldsymbol{v}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) = \sum_{i=1}^n \frac{\partial \boldsymbol{v}}{\partial x_i}(\mathbf{x}) f_i(\mathbf{x})$$

6 / 55

Theorem

Let \mathbf{x}_0 be equilibrium, U open neighborhood of \mathbf{x}_0 and $v \colon \mathbb{R}^n \to \mathbb{R}$ strict Lyapunov function.

Let $S_R = \{ \mathbf{x} \in \mathbb{R}^n \mid v(\mathbf{x}) \leq R \}$ for $R \in \mathbb{R}_0^+$ be a sublevel set of v and assume that

- S_R is compact
- $S_R \subset U$

Then $S_R \subset A(\mathbf{x}_0)$ and S_R is positively invariant.

Remark: Positive invariance is true if $\dot{v}(\mathbf{x}) < 0$ holds for all $\mathbf{x} \in \partial S_R = {\mathbf{x} \in \mathbb{R}^n \mid v(\mathbf{x}) = R}$

Example

$$\begin{cases} \dot{x} &= -x + x^3 \\ \dot{y} &= -\frac{1}{2}y + x^2 \end{cases}$$

sign of
$$\dot{v}(x,y) = \nabla v(x,y) \cdot \mathbf{f}(x,y)$$

= $\begin{pmatrix} x \\ 2y \end{pmatrix} \cdot \begin{pmatrix} -x + x^3 \\ -\frac{1}{2}y + x^2 \end{pmatrix}$

 $v(x,y) = \frac{1}{2}x^2 + y^2$

▲ 郡 ▶ ▲ 臣

æ

2. Existence and construction of Lyapunov functions

- "converse Theorems" (Massera 1949) etc. but not constructive!
- explicit construction possible for linear equations, special cases
- used in applications (engineering, biology)

We will present two general construction methods:

- construct continuous and piece-wise affine (CPA) Lyapunov functions
- solve a partial differential equation by meshless collocation with Radial Basis Functions (RBF)

For more methods, see review (Giesl, Hafstein 2015)

Reminder: for a Lyapunov function we require

•
$$V(\mathbf{x}) \ge 0$$

• $\dot{V}(\mathbf{x}) \leq 0$

2.1 CPA method

Continuous piece-wise affine function, affine on each simplex

- define triangulation: collection \mathcal{T} of simplices $\mathcal{S} = \mathrm{co}(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n)$
- vertex set $\mathcal{V}_\mathcal{T}$
- h_C : largest distance of vertices in a simplex

Example of triangulation

CPA function

CPA function defined by values on vertices:

- i) Fix $V_{\mathbf{x}}$ for every $\mathbf{x} \in \mathcal{V}_{\mathcal{T}}$ (vertex set)
- ii) V is affine on every simplex $S_{\nu} \in \mathcal{T}$, i.e. $V(\mathbf{x}) = \mathbf{a}_{\nu}^T \mathbf{x} + b_{\nu}$ for $\mathbf{x} \in S_{\nu}$ with $\mathbf{a}_{\nu} \in \mathbb{R}^n$, $b_{\nu} \in \mathbb{R}$

CPA function

Translate Lyapunov function conditions

- $V(\mathbf{x}) \ge \|\mathbf{x}\|$
- $\mathbf{0} \ \dot{V}(\mathbf{x}) \leq \|\mathbf{x}\|$

into sufficient conditions on values at vertices For every $S_{\nu} = co(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n)$ and every vertex $\mathbf{x}_i \in S_{\nu}$,

• $V(\mathbf{x}_i) \ge \|\mathbf{x}_i\|$ • $\dot{V}(\mathbf{x}_i) + B_{\nu}h_C^2 \|\nabla V_{\nu}\|_1 \le -\|\mathbf{x}_i\|$ where $B_{\nu} \ge \max_{m,r,s=1,...,n} \max_{\mathbf{x}\in\mathcal{S}_{\nu}} \left|\frac{\partial^2 f_m}{\partial x_r \partial x_s}(\mathbf{x})\right|, h_C$ size of simplex

Remarks

- B_{ν} need to be input by hand only upper bounds necessary
- V is not differentiable, but smooth on each simplex
- Constraints are linear in $V(\mathbf{x}_i)$

- Write conditions as constraints of Linear Programming (LP) problem with variables $V_{\mathbf{x}_i}$
- If the LP problem has a solution, then the CPA function is a Lyapunov function
- Note: not a numerical approximation, V is a Lyapunov function!
- Moreover, if the triangulation is sufficiently fine, then the method always finds a Lyapunov function

Example

 $V_{\mathbf{x}}$ solution to the LP problem

Example

CPA Lyapunov function

Peter Giesl (Sussex, UK) Lyapunov functions and contraction metrics

<日

<</p>

15 / 55

Computing sublevel sets

- find connected component which includes equilibrium
- increase level
- until boundary of admissible area reached
- results in subset of basin of attraction
- algorithm for CPA functions

2.2 Meshfree collocation with Radial Basis Functions (RBF)

Converse Theorem

Theorem (Existence of V)

Let $\mathbf{f} \in C^{\sigma}(\mathbb{R}^n, \mathbb{R}^n)$, $\sigma \geq 1$, 0 exponentially stable equilibrium. Then there exists $V \in C^{\sigma}(A(\mathbf{0}), \mathbb{R})$ with

(2)
$$\dot{V}(\mathbf{x}) := \nabla V(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) = -\|\mathbf{x}\|^2$$
 for all $\mathbf{x} \in A(\mathbf{0})$.

Proof: $V(\mathbf{x}) = \int_0^\infty \|S_t \mathbf{x}\|^2 dt$

Goal: explicit construction of Lyapunov function

Idea: approximate solution of first-order linear PDE (2)

Consider linear PDE

(PDE)
$$LV(\mathbf{x}) = \dot{V}(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x}) \frac{\partial V}{\partial x_i}(\mathbf{x}) = -\|\mathbf{x}\|^2$$

- Approximation V_R of V using Meshless collocation, in particular Radial Basis Functions (RBF)
- Approximation V_R itself is a Lyapunov function

Radial Basis Functions: approximate solution of PDE

- PDE: LV(x) = -||x||², L linear differential operator (orbital derivative)
- ψ_k(||**x**||) (Radial Basis Function), here:
 ψ_k Wendland's function (compact support)

- Corresponds to Reproducing Kernel Hilbert space H of functions with kernel $\Phi(\mathbf{x},\mathbf{y}):=\psi_k(\|\mathbf{x}-\mathbf{y}\|)$ (Sobolev space)
- Collocation points $X_N = \{\mathbf{x}_1, \dots, \mathbf{x}_N\} \subset \mathbb{R}^n$, $\lambda_i := (\delta_{\mathbf{x}_i} \circ L) \in H^*$
- Solution of problem

$$\left\{egin{array}{ll} {
m minimise} & \|V\|_H \ {
m subject to} & LV({f x}_i)=-\|{f x}_i\|^2, \; orall {f x}_i\in X_N \end{array}
ight.$$

is $V_R(\mathbf{x}) = \sum_{j=1}^N \alpha_j \lambda_j^{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y})$

- $\alpha \in \mathbb{R}^N$ determined by: $\dot{V}_R(\mathbf{x}_j) = -\|\mathbf{x}_j\|^2$ for all $j = 1, \dots, N$, i.e.
- $A\alpha = r$, where $a_{ij} = \lambda_i^{\mathbf{x}} \lambda_j^{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y})$, $r_i = -\|\mathbf{x}_i\|^2$
- A is symmetric and positive definite \Rightarrow non-singular

$$|\dot{V}(\mathbf{x}) - \dot{V}_R(\mathbf{x})| \le C h_R^{k-1/2}$$
 for all $\mathbf{x} \in K$

where

- k smoothness of Radial Basis Function
- $h_R := \sup_{\mathbf{y} \in K} \min_{\mathbf{x} \in X_N} \|\mathbf{x} \mathbf{y}\|$: fill distance, measuring how dense collocation points are in K

Estimate

 V_R is Lyapunov function: if $Ch_R^{k-1/2} \leq \varepsilon$, then

$$\dot{V}_R(\mathbf{x}) \leq \dot{V}(\mathbf{x}) + \varepsilon \leq -\|\mathbf{x}\|^2 + \varepsilon < 0$$

for $\|\mathbf{x}\|^2 > \varepsilon$ (local problem)

$$\begin{cases} \dot{x} = -x + x^3 \\ \dot{y} = -\frac{1}{2}y + x^2 \end{cases}$$

Grid, $\dot{v} = 0$, sublevel set (thick black), previous sublevel set (thin black)

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Problem:

- How to verify $\dot{V}_R(\mathbf{x}) < 0$ for all $\mathbf{x} \in K$ (infinitely many)?
- $\bullet\,$ Error estimate depends on V and is not known in practice

Two methods:

- Evaluate computed function at finitely many points, apply Taylor approximation with explicit bounds on derivatives.
 Many evaluation points, but verifies computed function
- **2** Use CPA (continuous piecewise affine) interpolation V_C of V_R and use verification as discussed earlier.

Much faster, but verifies different function

Both methods can be shown to always work if evaluation/interpolation is sufficiently fine.

Example 1: $\dot{x} = -y$, $\dot{y} = x + y(x^2 - 1)^2$

RBF approximation 19×19 – CPA interpolation, x – inequality violated 4/648

Example 2

Peter Giesl (Sussex, UK)

System:

$$\dot{\mathbf{x}} = \begin{pmatrix} x(x^2 + y^2 - 1) - y(z^2 + 1) \\ y(x^2 + y^2 - 1) + x(z^2 + 1) \\ 10z(z^2 - 1) \end{pmatrix}$$

Level set (red); orbital derivative (of CPA interpolation) is not negative (blue dots)

Lyapunov function

- minimum at equilibrium ($v(\mathbf{x}) \geq 0$)
- decreasing along solutions ($\dot{v}(\mathbf{x}) \leq 0$, orbital derivative)
- gives information about basin of attraction/positively invariant sets through (sub)level sets

Construction methods

• CPA: affine function on simplices, conditions as constraints of Linear Programming problem

25 / 55

• RBF: smooth function, conditions as solution of linear Partial Differential Equation

- CPA and RBF work on compact set and have problems close to equilibrium
- CPA: inequalities, RBF needs equation
- CPA slow but delivers a true (nonsmooth) Lyapunov function
- RBF (comparatively) fast, smooth function, but separate verification is necessary
- CPA and RBF are guaranteed to succeed if sufficiently fine simplices/dense collocation points

Review

• P. Giesl & S. Hafstein, Review on computational methods for Lyapunov functions, Discrete Cont. Dyn. Syst. Ser. B, **20** (2015), 2291–2331.

RBF

- P. Giesl, *Construction of Global Lyapunov Functions Using Radial Basis Functions*, Lecture Notes in Math. 1904, Springer, 2007.
- P. Giesl & H. Wendland, Meshless Collocation: Error Estimates with Application to Dynamical Systems, SIAM J. Numer. Anal. 45 No. 4 (2007), 1723–1741.

СРА

• S. Hafstein, "An algorithm for constructing Lyapunov functions", Electron. J. Differential Equ. Monogr., **8** (2007).

RBF-CPA

• P. Giesl & S. Hafstein, Computation and Verification of Lyapunov functions, SIAM J. Applied Dyn. Syst., **14** (2015), 1663–1698.

・ロト ・ 同ト ・ ヨト ・ ヨト

Classical Lyapunov functions: for one attractor, e.g. equilibrium or periodic orbit. Now consider $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, $\mathbf{x} \in \Omega \subseteq \mathbb{R}^n$.

- Phase space can be split into chain-recurrent set \mathcal{R} (containing equilibria, periodic orbits, attractors, repellers, etc.) and the complement with gradient-like flow
- Complete Lyapunov function (Conley) $V \colon \Omega \to \mathbb{R}$ satisfies
 - $\dot{V}(\mathbf{x}) < 0$ (decreasing along solutions) on gradient-like part (transient behaviour)
 - $\dot{V}(\mathbf{x}) = 0$ on chain-recurrent set, has distinct values on distinct chain-transitive components of \mathcal{R}

(Conley 1978, 1988), (Hurley 1991, 1998), (Osipenko 2007), (Patrao 2011)

- Goal to find a (candidate) complete Lyapunov function satisfying $\dot{V}({\bf x}) \leq 0$ for all ${\bf x} \in \Omega$
- with large area $\{x \in \Omega \mid \dot{V}(\mathbf{x}) < 0\}$

Then

- $\{\mathbf{x} \in \Omega \mid \dot{V}(\mathbf{x}) = 0\}$ contains chain-recurrent set
- Maxima/minima of V indicate stability

Example: $\dot{x} = -x(x^2 - 1)$

Peter Giesl (Sussex, UK)

Lyapunov functions and contraction metrics

3.1 Numerical construction: Meshfree collocation RBF (equation)

Solve $\dot{V}(\mathbf{x}) = -1$ via meshless collocation.

- the PDE has no solution on chain-recurrent set
- $\bullet\,$ meshless collocation has solution v
- set where $\dot{V}_R(\mathbf{x}) pprox 0$ approximates chain-recurrent set $\mathcal R$
- iterations for better approximations
- no proof of convergence
- software LyapXool

Complete Lyapunov function: equation

More appropriate: differential equation/inequality

solve

$$\begin{cases} \begin{array}{ll} \text{minimise} & \|V\|_H\\ \text{subject to} & \dot{V}(\mathbf{x}) = -1 \text{ for all } \mathbf{x} \in \Gamma\\ & \dot{V}(\mathbf{x}) \leq 0 \text{ for all } \mathbf{x} \in \Omega(\backslash \Gamma) \end{cases} \end{cases}$$

Remarks:

- We need to ensure Γ lies in the gradient-flow part
- How large does Γ need to be?
- Can we assume $\dot{V}(\mathbf{x}) = -1$ in the gradient-flow part; does such a function exist?
- How do we find a (numerical) solution?

Existence of complete Lyapunov function with prescribed derivative

Theorem (Giesl, Suhr, Hafstein (2022))

Let $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ define a dynamical system on an open set $\Omega \subset \mathbb{R}^d$ with $\mathbf{f} \in C^l(\Omega, \mathbb{R}^d)$, where $l \in \mathbb{N} \cup \{\infty\}$. Then for every compact set $K \subset \Omega \setminus \mathcal{R}$ and every C^l -function $g \colon \Omega_K \to (-\infty, 0)$ defined on a neighborhood $\Omega_K \subset \Omega$ of K there exists a complete C^l -Lyapunov function $V \colon \Omega \to \mathbb{R}$ with • $\dot{V}(\mathbf{x}) = g(\mathbf{x})$ for all $\mathbf{x} \in K$ and

• $\dot{V}(\mathbf{x}) < 0$ for all $\mathbf{x} \in \Omega \setminus \mathcal{R}$.

Proof is based on a modification of a C^∞ complete Lyapunov function from (Hafstein, Suhr 2021)

Hence, we can set $g(\mathbf{x}) = -1$

3.2 Discretising differential inequalities

- Let $\Gamma \subset \Omega \subset \mathbb{R}^d$
- Goal: solve

$$Lv(\mathbf{x}) = -1, \ \forall \mathbf{x} \in \Gamma, \\ Lv(\mathbf{x}) \le 0, \ \forall \mathbf{x} \in \Omega \setminus \Gamma$$

- L is a linear (differential) operator
- Consider (Reproducing Kernel) Hilbert space H of functions $v: \Omega \to \mathbb{R}$ with kernel $\Phi(\mathbf{x}, \mathbf{y})$
- Optimisation problem for $v \in H$

$$\begin{cases} \text{minimise} & \|v\|_H\\ \text{subject to} & Lv(\mathbf{x}) = -1, \ \forall \mathbf{x} \in \Gamma,\\ & Lv(\mathbf{x}) \le 0, \ \forall \mathbf{x} \in \Omega \setminus \Gamma. \end{cases}$$

Discretising differential inequalities: convergence

• Continuous problem:

(3)
$$\begin{cases} \text{minimise} & \|v\|_H \\ \text{subject to} & Lv(\mathbf{x}) = -1, \ \forall \mathbf{x} \in \Gamma, \\ & Lv(\mathbf{x}) \le 0, \ \forall \mathbf{x} \in \Omega \setminus \Gamma. \end{cases}$$

• Meshfree collocation: discretise problem. Given discrete (regular) points $X_{\Gamma} \subset \Gamma$, $X_{\Omega} \subset \Omega \setminus \Gamma$, solve

(4)
$$\begin{cases} \text{minimise} & \|v\|_H \\ \text{subject to} & Lv(\mathbf{x}_i) = -1, \ \forall \mathbf{x}_i \in X_{\Gamma}, \\ & Lv(\mathbf{x}_i) \le 0, \ \forall \mathbf{x}_i \in X_{\Omega}. \end{cases}$$

Results:

- (3) and (4) have unique solution
- (4) can be solved by quadratic optimisation
- Strong convergence in *H* of solutions of discretised problem (4) to solution of continuous system (3)
Discretised version: quadratic optimisation

H RKHS with kernel Φ , $M, N \in \mathbb{N}$, $\lambda_i = (\delta_{x_i} \circ L) \in H^*$, $i = 1, \dots, M + N$ linearly independent

(5)
$$\begin{cases} \text{minimise} & \|v\|_H \\ \text{subject to} & \lambda_i(v) = -1, \quad i = 1, \dots, M, \\ & \lambda_{M+i}(v) \le 0, \quad i = 1, \dots, N. \end{cases}$$

Then

- (5) has unique minimiser $v^*(\mathbf{x}) = \sum_{j=1}^{M+N} \alpha_j \lambda_j^{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y})$
- ullet coefficients α_j are the unique solution of the minimisation problem

(6)
$$\begin{cases} \begin{array}{l} \text{minimise} & \alpha^T A \alpha \\ \text{subject to} & A_1 \alpha &= -1 \in \mathbb{R}^M \\ \text{and} & A_2 \alpha &\leq \mathbf{0} \in \mathbb{R}^N. \end{cases} \\ A = (a_{ij}) = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, A_1 \in \mathbb{R}^{M \times (M+N)}, A_2 \in \mathbb{R}^{N \times (M+N)} \text{ and} \\ a_{ij} = \lambda_i^{\mathbf{x}} \lambda_j^{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y}) \end{cases} \end{cases}$$

Example 1: two periodic orbits

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -x(x^2 + y^2 - 1/4)(x^2 + y^2 - 1) - y \\ -y(x^2 + y^2 - 1/4)(x^2 + y^2 - 1) + x \end{pmatrix}$$

v(x,y)

 $\dot{v}(0.1846,0) = -1$ by the equality constraint

Peter Giesl (Sussex, UK)

Example 2: homoclinic orbit

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} x(1-x^2-y^2) - y((x-1)^2 + (x^2+y^2-1)^2) \\ y(1-x^2-y^2) + x((x-1)^2 + (x^2+y^2-1)^2) \end{pmatrix}$$

 $\dot{v}(x,y)$

$\dot{v}(0.1846,0) = -1$ by the equality constraint

Peter Giesl (Sussex, UK)

3.3 New optimisation problem

 Drawback of previous approach: some knowledge of chain-recurrent set (for equality condition)

```
\left\{ \begin{array}{ll} {\rm minimise} & \|V\|_H\\ {\rm subject \ to} & \dot{V}({\bf x}) \leq 0 \ {\rm for \ all \ x} \in \Omega \end{array} \right. has trivial solution V\equiv 0
```

New idea (Giesl, Argáez, Hafstein, Wendland 2021): consider

 $\begin{cases} \text{minimise} & \|V\|_{H}^{2} + \int_{\Omega} \dot{V}(\mathbf{x}) \, d\mathbf{x} \\ \text{subject to} & \dot{V}(\mathbf{x}) \leq 0 \text{ for all } \mathbf{x} \in \Omega \end{cases}$

- Cost function rewards areas with negative orbital derivative
- No knowledge of gradient-like flow required
- Still leads to quadratic optimisation problem

Peter Giesl (Sussex, UK)

۲

Example 1: two periodic orbits

э

blue: computed set containing attractor, red: attractor

References

Equation

- C. Argaez, P. Giesl & S. Hafstein: Complete Lyapunov Functions: Computation and Applications. In: Simulation and Modeling Methodologies, Technologies and Applications Series: Advances in Intelligent Systems and Computing 873, M. Obaidat, T. Oren, and F. De Rango (eds.), Springer, pages 200-221 (2019).
- C. Argaez, P. Giesl & S. Hafstein: Update (2.0) to LyapXool: Eigenpairs and new classification methods. SoftwareX 12 (2020) 100616.

Differential inequalities

- P. Giesl, C. Argaez, S. Hafstein & H. Wendland: Construction of a complete Lyapunov function using quadratic programming. In: *Proceedings ICINCO* Vol. 1 (2018), 560-568.
- P. Giesl, C. Argaez, S. Hafstein & H. Wendland: Minimization with differential inequality constraints applied to complete Lyapunov functions. *Math. Comp.* 90 (2021), 2137-2160.

Existence of complete Lyapunov functions

- S. Hafstein & S. Suhr: Smooth complete Lyapunov functions for ODEs. J. Math. Anal. Appl. **499** (2021), Article 125003.
- P. Giesl, S. Hafstein & S. Suhr: Existence of complete Lyapunov functions with prescribed orbital derivative. *Discrete Cont. Dyn. Sys. Ser. B* (2022) online

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

4. Contraction metrics

- Consider $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$
- Adjacent solutions contract with respect to contraction metric
- Can be used to show existence, uniqueness, stability and basin of attraction of equilibria/periodic orbits
- Robust with respect to perturbations of the system

Problem Find Riemannian metric $M \in C^1(\Omega; \mathbb{S}^{n \times n})$ (symmetric matrices) with scalar product $\langle v, w \rangle_M = v^T M(\mathbf{x}) w$ such that

- $M(\mathbf{x}) \succ 0$ (positive definite)
- $LM(\mathbf{x}) := \dot{M}(\mathbf{x})D\mathbf{f}(\mathbf{x}) + \dot{M}(\mathbf{x}) + D\mathbf{f}(\mathbf{x})^T M(\mathbf{x}) \prec 0$ (negative definite)

Idea of contraction metric

Idea

- Solutions $S_t \mathbf{x}$ and $S_t \mathbf{y}$, \mathbf{y} near \mathbf{x}
- Time-dependent distance (squared)

 $S_t \mathbf{y}$ $S_t \mathbf{x}$

$$d^{2}(t) := (S_{t}\mathbf{y} - S_{t}\mathbf{x})^{T}M(S_{t}\mathbf{x})(S_{t}\mathbf{y} - S_{t}\mathbf{x})$$

• Derivative, denoting $\mathbf{v}=S_t\mathbf{y}-S_t\mathbf{x}:$ exponential decay of d(t)

У

$$\begin{aligned} \frac{d}{dt}d^{2}(t) &\approx (S_{t}\mathbf{y} - S_{t}\mathbf{x})^{T}D\mathbf{f}(S_{t}\mathbf{x})^{T}M(S_{t}\mathbf{x})(S_{t}\mathbf{y} - S_{t}\mathbf{x}) \\ &+ (S_{t}\mathbf{y} - S_{t}\mathbf{x})^{T}\dot{M}(S_{t}\mathbf{x})(S_{t}\mathbf{y} - S_{t}\mathbf{x}) \\ &+ (S_{t}\mathbf{y} - S_{t}\mathbf{x})^{T}M(S_{t}\mathbf{x})D\mathbf{f}(S_{t}\mathbf{x})(S_{t}\mathbf{y} - S_{t}\mathbf{x}) \\ &= \mathbf{v}^{T}[\underbrace{M(S_{t}\mathbf{x})D\mathbf{f}(S_{t}\mathbf{x}) + \dot{M}(S_{t}\mathbf{x}) + D\mathbf{f}(S_{t}\mathbf{x})^{T}M(S_{t}\mathbf{x})]}_{=LM(S_{t}\mathbf{x})\prec -2\nu M(S_{t}\mathbf{x})}]\mathbf{v} \\ &\leq -2\nu d^{2}(t) \end{aligned}$$

Contraction metric and basin of attraction

Theorem

- $\varnothing \neq K \subset \mathbb{R}^n$ positively invariant, compact and connected
- Riemannian metric $M \in C^1(\mathbb{R}^n, \mathbb{S}^{n \times n})$ $(M(\mathbf{x}) \succ 0)$
- $LM(\mathbf{x}) = M(\mathbf{x})D\mathbf{f}(\mathbf{x}) + \dot{M}(\mathbf{x}) + D\mathbf{f}(\mathbf{x})^T M(\mathbf{x}) \prec -2\nu M(\mathbf{x})$ for all $x \in K$ with $\nu > 0$

Then

- Existence and uniqueness of an exponentially asymptotically stable equilibrium $\mathbf{x}_0 \in K$
- $-\nu$ is upper bound on rate of exponential attraction
- $K \subset A(\mathbf{x}_0)$ (basin of attraction)

Remark: On compact set, it is sufficient to have

$$LM(\mathbf{x}) = M(\mathbf{x})D\mathbf{f}(\mathbf{x}) + \dot{M}(\mathbf{x}) + D\mathbf{f}(\mathbf{x})^T M(\mathbf{x}) \prec 0$$

• There exists specific contraction metric satisfying

$$LM(\mathbf{x}) := M(\mathbf{x})D\mathbf{f}(\mathbf{x}) + \dot{M}(\mathbf{x}) + D\mathbf{f}(\mathbf{x})^T M(\mathbf{x}) = -C \prec 0$$

for all $\mathbf{x} \in A(\mathbf{x}_0)$

- Approximate M satisfying equation above using meshless collocation (of matrix-valued functions)
- Interpolation with CPA metric to verify conditions

Examples: Van der Pol (time-reversed, equilibrium) $\dot{x} = -y$ $\dot{y} = x - 3(1 - x^2)y$

Black: 1926 collocation points Blue: $M(\mathbf{x})$ not positive definite

Green: equilibrium Red: $LM(\mathbf{x})$ not negative definite

Example: Van der Pol (time-reversed, equilibrium) $\dot{x} = -y$ $\dot{y} = x - 3(1 - x^2)y$

Dark green: positively invariant set (using Lyapunov-like function)

Contraction metric for periodic orbit

- periodic orbit $\Gamma = \{S_t \mathbf{x} \mid t \in [0,T)\}$ with $\mathbf{x} = S_T \mathbf{x}$
- basin of attraction $A(\Gamma) = \{ \boldsymbol{\xi} \in \mathbb{R}^n \mid \operatorname{dist}(S_t \boldsymbol{\xi}, \Gamma) \xrightarrow{t \to \infty} 0 \}$
- similar method for periodic orbits: contraction only in (n-1)-dimensional hyperplane perpendicular to $\mathbf{f}(\mathbf{x})$

Example: unit circle (periodic orbit) $\dot{x} = (x + \varepsilon)(1 - x^2 - y^2) - (y + \varepsilon)$ $\dot{y} = (y + \varepsilon)(1 - x^2 - y^2) + (x + \varepsilon)$

$$\varepsilon = 0$$

$$\varepsilon = 0.2$$
 (same metric)

Peter Giesl (Sussex, UK) Lyapunov functions and contraction metrics

References

Review

• P. Giesl, S. Hafstein & C. Kawan, Review on contraction analysis and computation of contraction metrics. J. Comp. Dyn. accepted, arXiv:2203.01367

Existence of contraction metrics

- P. Giesl, Converse theorems on contraction metrics for an equilibrium. J. Math. Anal. Appl. 424 (2015), 1380-1403.
- P. Giesl, On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete Contin. Dyn. Syst. Ser. B 26 (2021), 4839-4865.

Computation

- P. Giesl & H. Wendland, Kernel-based Discretisation for Solving Matrix-Valued PDEs. SIAM J. Numer. Anal. 56 No. 6 (2018), 3386-3406.
- P. Giesl, Computation of a contraction metric for a periodic orbit. SIAM J. Appl. Dyn. Syst. 18 (2019), 1536-1564.

CPA verification

- P. Giesl, S. Hafstein & I. Mehrabinezhad, Computation and Verification of Contraction Metrics for Equilibria. J. Comput. Appl. Math. 390 (2021), 113332.
- P. Giesl, S. Hafstein & I. Mehrabinezhad, Computation and verification of contraction metrics for periodic orbits. J. Math. Anal. Appl. 503 (2021), Article 125309.

3

イロト イヨト イヨト ・

- Analytical tools:
 - (complete) Lyapunov function $V \colon \mathbb{R}^n \to \mathbb{R}$
 - contraction metric $M\colon\mathbb{R}^n\to\mathbb{S}^{n\times n},$ robust with respect to perturbations, no information about equilibrium/periodic orbit required
- Numerical methods:
 - RBF (Radial Basis Functions) meshless collocation (solve system of linear equations or quadratic optimisation for differential inequalities)
 - CPA (continuous piecewise affine) linear optimisation (triangulation of compact phase space, verification)

- Discrete systems $\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n)$
- Periodic time $\dot{\mathbf{x}}=\mathbf{f}(t,\mathbf{x}),\ \mathbf{f}(t+T,\mathbf{x})=\mathbf{f}(t,\mathbf{x})$
- Finite time $\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x})$, $t \in [0, T]$
- Non-smooth systems
- Stochastic systems
- Dimension of attractors, entropy

QUESTIONS?

Webpage: http://users.sussex.ac.uk/~pag20/

∃ →