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a closed subset = intervals of the poset. If X is a space, the
mouth of a subset A C X is mo(A) = A~ A. Ais locally closed iff

mo(A) is closed.
a

Connectivity: The Sierpiniski space 1b is path-connected, y(t)=5b
for t <1, y(1) = ais continuous. Thus, if the Hasse diagram is
connected as an undirected graph, the topological space is path-
connected. The converse holds.

Thm: Two continuous maps f,g : X — Y between finite spaces
are homotopic iff there is a sequence f =i <A >hHL<...f, =g,
where h < b means h(x) < h'(x) for every x € X.

Proof: By the exponential law, there is a homotopy

H: X x[0,1] — Y from f to g iff there is a path ~ : [0,1] — YX
from f to g. The order associated to the compact-open topology
in YX is the pointwise-order defined above. So there is a path from
f to g iff they are in the same component of the Hasse diagram.
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Thm (McCord): X and IC(X) have the same homotopy and
homology groups.



