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tion about the manifold M by understanding how the homotopy
type of level sets Ma = {p ∈ M|f (p) ≤ a} changes as a increases.
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The (opposite of the) gradient
of f generates a dynamical sys-
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the gradient vanishes.
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Morse inequalities: If αk is the number of critical points of index k ,
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b is path-connected, γ(t)=b

for t < 1, γ(1) = a is continuous. Thus, if the Hasse diagram is
connected as an undirected graph, the topological space is path-
connected. The converse holds.

Thm: Two continuous maps f , g : X → Y between finite spaces
are homotopic iff there is a sequence f = f0 ≤ f1 ≥ f2 ≤ . . . fn = g ,
where h ≤ h′ means h(x) ≤ h′(x) for every x ∈ X .
Proof: By the exponential law, there is a homotopy
H : X × [0, 1] → Y from f to g iff there is a path γ : [0, 1] → Y X

from f to g . The order associated to the compact-open topology
in Y X is the pointwise-order defined above. So there is a path from
f to g iff they are in the same component of the Hasse diagram.
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Thm (McCord): X and K(X ) have the same homotopy and
homology groups.


